/** * @file smallExample.cpp * @brief Create small example with two poses and one landmark * @brief smallExample * @author Carlos Nieto * @author Frank dellaert */ #include #include using namespace std; #include "Ordering.h" #include "Matrix.h" #include "NonlinearFactor.h" #include "ConstrainedLinearFactorGraph.h" #include "smallExample.h" #include "Point2Prior.h" #include "Simulated2DOdometry.h" #include "Simulated2DMeasurement.h" #include "simulated2D.h" // template definitions #include "FactorGraph-inl.h" #include "NonlinearFactorGraph-inl.h" namespace gtsam { typedef boost::shared_ptr > shared; /* ************************************************************************* */ boost::shared_ptr sharedNonlinearFactorGraph() { // Create boost::shared_ptr nlfg(new ExampleNonlinearFactorGraph); // prior on x1 double sigma1=0.1; Vector mu(2); mu(0) = 0 ; mu(1) = 0; shared f1(new Point2Prior(mu, sigma1, "x1")); nlfg->push_back(f1); // odometry between x1 and x2 double sigma2=0.1; Vector z2(2); z2(0) = 1.5 ; z2(1) = 0; shared f2(new Simulated2DOdometry(z2, sigma2, "x1", "x2")); nlfg->push_back(f2); // measurement between x1 and l1 double sigma3=0.2; Vector z3(2); z3(0) = 0. ; z3(1) = -1.; shared f3(new Simulated2DMeasurement(z3, sigma3, "x1", "l1")); nlfg->push_back(f3); // measurement between x2 and l1 double sigma4=0.2; Vector z4(2); z4(0)= -1.5 ; z4(1) = -1.; shared f4(new Simulated2DMeasurement(z4, sigma4, "x2", "l1")); nlfg->push_back(f4); return nlfg; } /* ************************************************************************* */ ExampleNonlinearFactorGraph createNonlinearFactorGraph() { return *sharedNonlinearFactorGraph(); } /* ************************************************************************* */ VectorConfig createConfig() { Vector v_x1(2); v_x1(0) = 0.; v_x1(1) = 0.; Vector v_x2(2); v_x2(0) = 1.5; v_x2(1) = 0.; Vector v_l1(2); v_l1(0) = 0.; v_l1(1) = -1.; VectorConfig c; c.insert("x1", v_x1); c.insert("x2", v_x2); c.insert("l1", v_l1); return c; } /* ************************************************************************* */ boost::shared_ptr sharedNoisyConfig() { Vector v_x1(2); v_x1(0) = 0.1; v_x1(1) = 0.1; Vector v_x2(2); v_x2(0) = 1.4; v_x2(1) = 0.2; Vector v_l1(2); v_l1(0) = 0.1; v_l1(1) = -1.1; boost::shared_ptr c(new VectorConfig); c->insert("x1", v_x1); c->insert("x2", v_x2); c->insert("l1", v_l1); return c; } /* ************************************************************************* */ VectorConfig createNoisyConfig() { return *sharedNoisyConfig(); } /* ************************************************************************* */ VectorConfig createCorrectDelta() { Vector v_x1(2); v_x1(0) = -0.1; v_x1(1) = -0.1; Vector v_x2(2); v_x2(0) = 0.1; v_x2(1) = -0.2; Vector v_l1(2); v_l1(0) = -0.1; v_l1(1) = 0.1; VectorConfig c; c.insert("x1", v_x1); c.insert("x2", v_x2); c.insert("l1", v_l1); return c; } /* ************************************************************************* */ VectorConfig createZeroDelta() { Vector v_x1(2); v_x1(0) = 0; v_x1(1) = 0; Vector v_x2(2); v_x2(0) = 0; v_x2(1) = 0; Vector v_l1(2); v_l1(0) = 0; v_l1(1) = 0; VectorConfig c; c.insert("x1", v_x1); c.insert("x2", v_x2); c.insert("l1", v_l1); return c; } /* ************************************************************************* */ LinearFactorGraph createLinearFactorGraph() { VectorConfig c = createNoisyConfig(); // Create LinearFactorGraph fg; // prior on x1 Matrix A11(2,2); A11(0,0) = 10; A11(0,1) = 0; A11(1,0) = 0; A11(1,1) = 10; Vector b = - c["x1"]/0.1; LinearFactor::shared_ptr f1(new LinearFactor("x1", A11, b)); fg.push_back(f1); // odometry between x1 and x2 Matrix A21(2,2); A21(0,0) = -10 ; A21(0,1) = 0; A21(1,0) = 0 ; A21(1,1) = -10; Matrix A22(2,2); A22(0,0) = 10 ; A22(0,1) = 0; A22(1,0) = 0 ; A22(1,1) = 10; // Vector b(2); b(0) = 2 ; b(1) = -1; LinearFactor::shared_ptr f2(new LinearFactor("x1", A21, "x2", A22, b)); fg.push_back(f2); // measurement between x1 and l1 Matrix A31(2,2); A31(0,0) = -5; A31(0,1) = 0; A31(1,0) = 0; A31(1,1) = -5; Matrix A32(2,2); A32(0,0) = 5 ; A32(0,1) = 0; A32(1,0) = 0 ; A32(1,1) = 5; b(0) = 0 ; b(1) = 1; LinearFactor::shared_ptr f3(new LinearFactor("x1", A31, "l1", A32, b)); fg.push_back(f3); // measurement between x2 and l1 Matrix A41(2,2); A41(0,0) = -5 ; A41(0,1) = 0; A41(1,0) = 0 ; A41(1,1) = -5; Matrix A42(2,2); A42(0,0) = 5 ; A42(0,1) = 0; A42(1,0) = 0 ; A42(1,1) = 5; b(0)= -1 ; b(1) = 1.5; LinearFactor::shared_ptr f4(new LinearFactor("x2", A41, "l1", A42, b)); fg.push_back(f4); return fg; } /* ************************************************************************* */ /** create small Chordal Bayes Net x <- y * x y d * 1 1 9 * 1 5 */ ChordalBayesNet createSmallChordalBayesNet() { Matrix R11 = Matrix_(1,1,1.0), S12 = Matrix_(1,1,1.0); Matrix R22 = Matrix_(1,1,1.0); Vector d1(1), d2(1); d1(0) = 9; d2(0) = 5; // define nodes and specify in reverse topological sort (i.e. parents last) ConditionalGaussian::shared_ptr x(new ConditionalGaussian(d1,R11,"y",S12)), y(new ConditionalGaussian(d2,R22)); ChordalBayesNet cbn; cbn.insert("x",x); cbn.insert("y",y); return cbn; } /* ************************************************************************* */ // Some nonlinear functions to optimize /* ************************************************************************* */ namespace optimize { Vector h(const Vector& v) { double x = v(0); return Vector_(2,cos(x),sin(x)); }; Matrix H(const Vector& v) { double x = v(0); return Matrix_(2,1,-sin(x),cos(x)); }; } /* ************************************************************************* */ boost::shared_ptr sharedReallyNonlinearFactorGraph() { boost::shared_ptr fg(new ExampleNonlinearFactorGraph); Vector z = Vector_(2,1.0,0.0); double sigma = 0.1; boost::shared_ptr factor(new NonlinearFactor1(z,sigma,&optimize::h,"x",&optimize::H)); fg->push_back(factor); return fg; } ExampleNonlinearFactorGraph createReallyNonlinearFactorGraph() { return *sharedReallyNonlinearFactorGraph(); } /* ************************************************************************* */ LinearFactorGraph createSmoother(int T) { // Create ExampleNonlinearFactorGraph nlfg; VectorConfig poses; // prior on x0 Vector x0 = zero(2); string key0 = symbol('x', 0); shared prior(new Point2Prior(x0, 1, key0)); nlfg.push_back(prior); poses.insert(key0, x0); for (int t = 1; t <= T; t++) { // odometry between x_t and x_{t-1} Vector odo = Vector_(2, 1.0, 0.0); string key = symbol('x', t); shared odometry(new Simulated2DOdometry(odo, 1, symbol('x', t - 1), key)); nlfg.push_back(odometry); // measurement on x_t double sigma3 = 0.2; Vector z = Vector_(2, t, 0.0); shared measurement(new Point2Prior(z, 1, key)); nlfg.push_back(measurement); poses.insert(key, z); } LinearFactorGraph lfg = nlfg.linearize(poses); return lfg; } /* ************************************************************************* */ ConstrainedLinearFactorGraph createSingleConstraintGraph() { // create unary factor // prior on "x", mean = [1,-1], sigma=0.1 double sigma = 0.1; Matrix Ax = eye(2) / sigma; Vector b1(2); b1(0) = 1.0; b1(1) = -1.0; LinearFactor::shared_ptr f1(new LinearFactor("x", Ax, b1 / sigma)); // create binary constraint factor // between "x" and "y", that is going to be the only factor on "y" // |1 2||x_1| + |10 0||y_1| = |1| // |2 1||x_2| |0 10||y_2| |2| Matrix Ax1(2, 2); Ax1(0, 0) = 1.0; Ax1(0, 1) = 2.0; Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0; Matrix Ay1 = eye(2) * 10; Vector b2 = Vector_(2, 1.0, 2.0); LinearConstraint::shared_ptr f2( new LinearConstraint("x", Ax1, "y", Ay1, b2)); // construct the graph ConstrainedLinearFactorGraph fg; fg.push_back(f1); fg.push_back_constraint(f2); return fg; } /* ************************************************************************* */ ConstrainedLinearFactorGraph createMultiConstraintGraph() { // unary factor 1 double sigma = 0.1; Matrix A = eye(2) / sigma; Vector b = Vector_(2, -2.0, 2.0)/sigma; LinearFactor::shared_ptr lf1(new LinearFactor("x", A, b)); // constraint 1 Matrix A11(2,2); A11(0,0) = 1.0 ; A11(0,1) = 2.0; A11(1,0) = 2.0 ; A11(1,1) = 1.0; Matrix A12(2,2); A12(0,0) = 10.0 ; A12(0,1) = 0.0; A12(1,0) = 0.0 ; A12(1,1) = 10.0; Vector b1(2); b1(0) = 1.0; b1(1) = 2.0; LinearConstraint::shared_ptr lc1(new LinearConstraint("x", A11, "y", A12, b1)); // constraint 2 Matrix A21(2,2); A21(0,0) = 3.0 ; A21(0,1) = 4.0; A21(1,0) = -1.0 ; A21(1,1) = -2.0; Matrix A22(2,2); A22(0,0) = 1.0 ; A22(0,1) = 1.0; A22(1,0) = 1.0 ; A22(1,1) = 2.0; Vector b2(2); b2(0) = 3.0; b2(1) = 4.0; LinearConstraint::shared_ptr lc2(new LinearConstraint("x", A21, "z", A22, b2)); // construct the graph ConstrainedLinearFactorGraph fg; fg.push_back(lf1); fg.push_back_constraint(lc1); fg.push_back_constraint(lc2); return fg; } /* ************************************************************************* */ //ConstrainedLinearFactorGraph createConstrainedLinearFactorGraph() //{ // ConstrainedLinearFactorGraph graph; // // // add an equality factor // Vector v1(2); v1(0)=1.;v1(1)=2.; // LinearConstraint::shared_ptr f1(new LinearConstraint(v1, "x0")); // graph.push_back_eq(f1); // // // add a normal linear factor // Matrix A21 = -1 * eye(2); // // Matrix A22 = eye(2); // // Vector b(2); // b(0) = 2 ; b(1) = 3; // // double sigma = 0.1; // LinearFactor::shared_ptr f2(new LinearFactor("x0", A21/sigma, "x1", A22/sigma, b/sigma)); // graph.push_back(f2); // return graph; //} /* ************************************************************************* */ // ConstrainedNonlinearFactorGraph , VectorConfig> createConstrainedNonlinearFactorGraph() { // ConstrainedNonlinearFactorGraph , VectorConfig> graph; // VectorConfig c = createConstrainedConfig(); // // // equality constraint for initial pose // LinearConstraint::shared_ptr f1(new LinearConstraint(c["x0"], "x0")); // graph.push_back_eq(f1); // // // odometry between x0 and x1 // double sigma = 0.1; // shared f2(new Simulated2DOdometry(c["x1"] - c["x0"], sigma, "x0", "x1")); // graph.push_back(f2); // TODO // return graph; // } /* ************************************************************************* */ //VectorConfig createConstrainedConfig() //{ // VectorConfig config; // // Vector x0(2); x0(0)=1.0; x0(1)=2.0; // config.insert("x0", x0); // // Vector x1(2); x1(0)=3.0; x1(1)=5.0; // config.insert("x1", x1); // // return config; //} /* ************************************************************************* */ //VectorConfig createConstrainedLinConfig() //{ // VectorConfig config; // // Vector x0(2); x0(0)=1.0; x0(1)=2.0; // value doesn't actually matter // config.insert("x0", x0); // // Vector x1(2); x1(0)=2.3; x1(1)=5.3; // config.insert("x1", x1); // // return config; //} /* ************************************************************************* */ //VectorConfig createConstrainedCorrectDelta() //{ // VectorConfig config; // // Vector x0(2); x0(0)=0.; x0(1)=0.; // config.insert("x0", x0); // // Vector x1(2); x1(0)= 0.7; x1(1)= -0.3; // config.insert("x1", x1); // // return config; //} /* ************************************************************************* */ //ConstrainedChordalBayesNet createConstrainedChordalBayesNet() //{ // ConstrainedChordalBayesNet cbn; // VectorConfig c = createConstrainedConfig(); // // // add regular conditional gaussian - no parent // Matrix R = eye(2); // Vector d = c["x1"]; // double sigma = 0.1; // ConditionalGaussian::shared_ptr f1(new ConditionalGaussian(d/sigma, R/sigma)); // cbn.insert("x1", f1); // // // add a delta function to the cbn // ConstrainedConditionalGaussian::shared_ptr f2(new ConstrainedConditionalGaussian); //(c["x0"], "x0")); // cbn.insert_df("x0", f2); // // return cbn; //} } // namespace gtsam