/** * @file testPoseRTV * @author Alex Cunningham */ #include #include #include #include #include using namespace gtsam; GTSAM_CONCEPT_TESTABLE_INST(PoseRTV) GTSAM_CONCEPT_LIE_INST(PoseRTV) static const Rot3 rot = Rot3::RzRyRx(0.1, 0.2, 0.3); static const Point3 pt(1.0, 2.0, 3.0); static const Velocity3 vel(0.4, 0.5, 0.6); static const Vector3 kZero3 = Vector3::Zero(); /* ************************************************************************* */ TEST( testPoseRTV, constructors ) { PoseRTV state1(pt, rot, vel); EXPECT(assert_equal(pt, state1.t())); EXPECT(assert_equal(rot, state1.R())); EXPECT(assert_equal(vel, state1.v())); EXPECT(assert_equal(Pose3(rot, pt), state1.pose())); PoseRTV state2; EXPECT(assert_equal(Point3(), state2.t())); EXPECT(assert_equal(Rot3(), state2.R())); EXPECT(assert_equal(kZero3, state2.v())); EXPECT(assert_equal(Pose3(), state2.pose())); PoseRTV state3(Pose3(rot, pt), vel); EXPECT(assert_equal(pt, state3.t())); EXPECT(assert_equal(rot, state3.R())); EXPECT(assert_equal(vel, state3.v())); EXPECT(assert_equal(Pose3(rot, pt), state3.pose())); PoseRTV state4(Pose3(rot, pt)); EXPECT(assert_equal(pt, state4.t())); EXPECT(assert_equal(rot, state4.R())); EXPECT(assert_equal(kZero3, state4.v())); EXPECT(assert_equal(Pose3(rot, pt), state4.pose())); Vector vec_init = (Vector(9) << 0.1, 0.2, 0.3, 1.0, 2.0, 3.0, 0.4, 0.5, 0.6).finished(); PoseRTV state5(vec_init); EXPECT(assert_equal(pt, state5.t())); EXPECT(assert_equal(rot, state5.R())); EXPECT(assert_equal(vel, state5.v())); EXPECT(assert_equal(vec_init, state5.vector())); } /* ************************************************************************* */ TEST( testPoseRTV, dim ) { PoseRTV state1(pt, rot, vel); EXPECT_LONGS_EQUAL(9, state1.dim()); EXPECT_LONGS_EQUAL(9, PoseRTV::Dim()); } /* ************************************************************************* */ TEST( testPoseRTV, equals ) { PoseRTV state1, state2(pt, rot, vel), state3(state2), state4(Pose3(rot, pt)); EXPECT(assert_equal(state1, state1)); EXPECT(assert_equal(state2, state3)); EXPECT(assert_equal(state3, state2)); EXPECT(assert_inequal(state1, state2)); EXPECT(assert_inequal(state2, state1)); EXPECT(assert_inequal(state2, state4)); } /* ************************************************************************* */ TEST( testPoseRTV, Lie ) { // origin and zero deltas PoseRTV identity; EXPECT(assert_equal(identity, (PoseRTV)identity.retract(zero(9)))); EXPECT(assert_equal(zero(9), identity.localCoordinates(identity))); PoseRTV state1(pt, rot, vel); EXPECT(assert_equal(state1, (PoseRTV)state1.retract(zero(9)))); EXPECT(assert_equal(zero(9), state1.localCoordinates(state1))); Vector delta(9); delta << 0.1, 0.1, 0.1, 0.2, 0.3, 0.4,-0.1,-0.2,-0.3; Pose3 pose2 = Pose3(rot, pt).retract(delta.head<6>()); Velocity3 vel2 = vel + Velocity3(-0.1, -0.2, -0.3); PoseRTV state2(pose2.translation(), pose2.rotation(), vel2); EXPECT(assert_equal(state2, (PoseRTV)state1.retract(delta))); EXPECT(assert_equal(delta, state1.localCoordinates(state2))); // roundtrip from state2 to state3 and back PoseRTV state3 = state2.retract(delta); EXPECT(assert_equal(delta, state2.localCoordinates(state3))); // roundtrip from state3 to state4 and back, with expmap. PoseRTV state4 = state3.expmap(delta); EXPECT(assert_equal(delta, state3.logmap(state4))); // For the expmap/logmap (not necessarily retract/local) -delta goes other way EXPECT(assert_equal(state3, (PoseRTV)state4.expmap(-delta))); EXPECT(assert_equal(delta, -state4.logmap(state3))); } /* ************************************************************************* */ TEST( testPoseRTV, dynamics_identities ) { // general dynamics should produce the same measurements as the imuPrediction function PoseRTV x0, x1, x2, x3, x4; const double dt = 0.1; Vector accel = Vector3(0.2, 0.0, 0.0), gyro = Vector3(0.0, 0.0, 0.2); Vector imu01 = zero(6), imu12 = zero(6), imu23 = zero(6), imu34 = zero(6); x1 = x0.generalDynamics(accel, gyro, dt); x2 = x1.generalDynamics(accel, gyro, dt); x3 = x2.generalDynamics(accel, gyro, dt); x4 = x3.generalDynamics(accel, gyro, dt); // EXPECT(assert_equal(imu01, x0.imuPrediction(x1, dt).first)); // EXPECT(assert_equal(imu12, x1.imuPrediction(x2, dt).first)); // EXPECT(assert_equal(imu23, x2.imuPrediction(x3, dt).first)); // EXPECT(assert_equal(imu34, x3.imuPrediction(x4, dt).first)); // // EXPECT(assert_equal(x1.translation(), x0.imuPrediction(x1, dt).second)); // EXPECT(assert_equal(x2.translation(), x1.imuPrediction(x2, dt).second)); // EXPECT(assert_equal(x3.translation(), x2.imuPrediction(x3, dt).second)); // EXPECT(assert_equal(x4.translation(), x3.imuPrediction(x4, dt).second)); } /* ************************************************************************* */ PoseRTV compose_proxy(const PoseRTV& A, const PoseRTV& B) { return A.compose(B); } TEST( testPoseRTV, compose ) { PoseRTV state1(pt, rot, vel), state2 = state1; Matrix actH1, actH2; state1.compose(state2, actH1, actH2); Matrix numericH1 = numericalDerivative21(compose_proxy, state1, state2); Matrix numericH2 = numericalDerivative22(compose_proxy, state1, state2); EXPECT(assert_equal(numericH1, actH1)); EXPECT(assert_equal(numericH2, actH2)); } /* ************************************************************************* */ PoseRTV between_proxy(const PoseRTV& A, const PoseRTV& B) { return A.between(B); } TEST( testPoseRTV, between ) { PoseRTV state1(pt, rot, vel), state2 = state1; Matrix actH1, actH2; state1.between(state2, actH1, actH2); Matrix numericH1 = numericalDerivative21(between_proxy, state1, state2); Matrix numericH2 = numericalDerivative22(between_proxy, state1, state2); EXPECT(assert_equal(numericH1, actH1)); EXPECT(assert_equal(numericH2, actH2)); } /* ************************************************************************* */ PoseRTV inverse_proxy(const PoseRTV& A) { return A.inverse(); } TEST( testPoseRTV, inverse ) { PoseRTV state1(pt, rot, vel); Matrix actH1; state1.inverse(actH1); Matrix numericH1 = numericalDerivative11(inverse_proxy, state1); EXPECT(assert_equal(numericH1, actH1)); } /* ************************************************************************* */ double range_proxy(const PoseRTV& A, const PoseRTV& B) { return A.range(B); } TEST( testPoseRTV, range ) { Point3 tA(1.0, 2.0, 3.0), tB(3.0, 2.0, 3.0); PoseRTV rtvA(tA), rtvB(tB); EXPECT_DOUBLES_EQUAL(0.0, rtvA.range(rtvA), 1e-9); EXPECT_DOUBLES_EQUAL(2.0, rtvA.range(rtvB), 1e-9); EXPECT_DOUBLES_EQUAL(2.0, rtvB.range(rtvA), 1e-9); Matrix actH1, actH2; rtvA.range(rtvB, actH1, actH2); Matrix numericH1 = numericalDerivative21(range_proxy, rtvA, rtvB); Matrix numericH2 = numericalDerivative22(range_proxy, rtvA, rtvB); EXPECT(assert_equal(numericH1, actH1)); EXPECT(assert_equal(numericH2, actH2)); } /* ************************************************************************* */ PoseRTV transformed_from_proxy(const PoseRTV& a, const Pose3& trans) { return a.transformed_from(trans); } TEST( testPoseRTV, transformed_from_1 ) { Rot3 R = Rot3::Rodrigues(0.1, 0.2, 0.3); Point3 T(1.0, 2.0, 3.0); Velocity3 V(2.0, 3.0, 4.0); PoseRTV start(R, T, V); Pose3 transform(Rot3::Yaw(M_PI_2), Point3(1.0, 2.0, 3.0)); Matrix actDTrans, actDGlobal; PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans); PoseRTV expected(transform.compose(start.pose()), transform.rotation().matrix() * V); EXPECT(assert_equal(expected, actual)); Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size EXPECT(assert_equal(numDGlobal, actDGlobal)); EXPECT(assert_equal(numDTrans, actDTrans, 1e-5)); // FIXME: still needs analytic derivative } /* ************************************************************************* */ TEST( testPoseRTV, transformed_from_2 ) { Rot3 R; Point3 T(1.0, 2.0, 3.0); Velocity3 V(2.0, 3.0, 4.0); PoseRTV start(R, T, V); Pose3 transform(Rot3::Yaw(M_PI_2), Point3(1.0, 2.0, 3.0)); Matrix actDTrans, actDGlobal; PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans); PoseRTV expected(transform.compose(start.pose()), transform.rotation().matrix() * V); EXPECT(assert_equal(expected, actual)); Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size EXPECT(assert_equal(numDGlobal, actDGlobal)); EXPECT(assert_equal(numDTrans, actDTrans, 1e-5)); // FIXME: still needs analytic derivative } /* ************************************************************************* */ TEST(testPoseRTV, RRTMbn) { EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(kZero3))); EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(Rot3()))); EXPECT(assert_equal(PoseRTV::RRTMbn(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMbn(Rot3::Ypr(0.1, 0.2, 0.3)))); } /* ************************************************************************* */ TEST(testPoseRTV, RRTMnb) { EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(kZero3))); EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(Rot3()))); EXPECT(assert_equal(PoseRTV::RRTMnb(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMnb(Rot3::Ypr(0.1, 0.2, 0.3)))); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */