/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file VisualISAM2Example.cpp * @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset * This version uses iSAM2 to solve the problem incrementally * @author Duy-Nguyen Ta */ /** * A structure-from-motion example with landmarks * - The landmarks form a 10 meter cube * - The robot rotates around the landmarks, always facing towards the cube */ // For loading the data #include "SFMdata.h" // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y). #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // We want to use iSAM2 to solve the structure-from-motion problem incrementally, so // include iSAM2 here #include // iSAM2 requires as input a set set of new factors to be added stored in a factor graph, // and initial guesses for any new variables used in the added factors #include #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems. // Here we will use Projection factors to model the camera's landmark observations. // Also, we will initialize the robot at some location using a Prior factor. #include #include #include using namespace std; using namespace gtsam; /* ************************************************************************* */ int main(int argc, char* argv[]) { // Define the camera calibration parameters Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); // Define the camera observation noise model noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks vector points = createPoints(); // Create the set of ground-truth poses vector poses = createPoses(); // Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps to maintain proper linearization // and efficient variable ordering, iSAM2 performs partial relinearization/reordering at each step. A parameter // structure is available that allows the user to set various properties, such as the relinearization threshold // and type of linear solver. For this example, we we set the relinearization threshold small so the iSAM2 result // will approach the batch result. ISAM2Params parameters; parameters.relinearizeThreshold = 0.01; parameters.relinearizeSkip = 1; ISAM2 isam(parameters); // Create a Factor Graph and Values to hold the new data NonlinearFactorGraph graph; Values initialEstimate; // Loop over the different poses, adding the observations to iSAM incrementally for (size_t i = 0; i < poses.size(); ++i) { // Add factors for each landmark observation for (size_t j = 0; j < points.size(); ++j) { SimpleCamera camera(poses[i], *K); Point2 measurement = camera.project(points[j]); graph.push_back(GenericProjectionFactor(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K)); } // Add an initial guess for the current pose // Intentionally initialize the variables off from the ground truth initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); // If this is the first iteration, add a prior on the first pose to set the coordinate frame // and a prior on the first landmark to set the scale // Also, as iSAM solves incrementally, we must wait until each is observed at least twice before // adding it to iSAM. if( i == 0) { // Add a prior on pose x0 noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3),Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw graph.push_back(PriorFactor(Symbol('x', 0), poses[0], poseNoise)); // Add a prior on landmark l0 noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); graph.push_back(PriorFactor(Symbol('l', 0), points[0], pointNoise)); // add directly to graph // Add initial guesses to all observed landmarks // Intentionally initialize the variables off from the ground truth for (size_t j = 0; j < points.size(); ++j) initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); } else { // Update iSAM with the new factors isam.update(graph, initialEstimate); // Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver. // If accuracy is desired at the expense of time, update(*) can be called additional times // to perform multiple optimizer iterations every step. isam.update(); Values currentEstimate = isam.calculateEstimate(); cout << "****************************************************" << endl; cout << "Frame " << i << ": " << endl; currentEstimate.print("Current estimate: "); // Clear the factor graph and values for the next iteration graph.resize(0); initialEstimate.clear(); } } return 0; } /* ************************************************************************* */