/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Hybrid_City10000.cpp * @brief Example of using hybrid estimation * with multiple odometry measurements. * @author Varun Agrawal * @date January 22, 2025 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "City10000.h" using namespace gtsam; using symbol_shorthand::L; using symbol_shorthand::M; using symbol_shorthand::X; // Experiment Class class Experiment { /// The City10000 dataset City10000Dataset dataset_; public: // Parameters with default values size_t maxLoopCount = 8000; // 3000: {1: 62s, 2: 21s, 3: 20s, 4: 31s, 5: 39s} No DT optimizations // 3000: {1: 65s, 2: 20s, 3: 16s, 4: 21s, 5: 28s} With DT optimizations // 3000: {1: 59s, 2: 19s, 3: 18s, 4: 26s, 5: 33s} With DT optimizations + // merge size_t updateFrequency = 3; size_t maxNrHypotheses = 10; size_t reLinearizationFrequency = 10; double marginalThreshold = 0.9999; private: HybridSmoother smoother_; HybridNonlinearFactorGraph newFactors_, allFactors_; Values initial_; /** * @brief Create a hybrid loop closure factor where * 0 - loose noise model and 1 - loop noise model. */ HybridNonlinearFactor hybridLoopClosureFactor( size_t loopCounter, size_t keyS, size_t keyT, const Pose2& measurement) const { DiscreteKey l(L(loopCounter), 2); auto f0 = std::make_shared>( X(keyS), X(keyT), measurement, kOpenLoopModel); auto f1 = std::make_shared>( X(keyS), X(keyT), measurement, kPoseNoiseModel); std::vector factors{{f0, kOpenLoopConstant}, {f1, kPoseNoiseConstant}}; HybridNonlinearFactor mixtureFactor(l, factors); return mixtureFactor; } /// @brief Create hybrid odometry factor with discrete measurement choices. HybridNonlinearFactor hybridOdometryFactor( size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m, const std::vector& poseArray) const { auto f0 = std::make_shared>( X(keyS), X(keyT), poseArray[0], kPoseNoiseModel); auto f1 = std::make_shared>( X(keyS), X(keyT), poseArray[1], kPoseNoiseModel); std::vector factors{{f0, kPoseNoiseConstant}, {f1, kPoseNoiseConstant}}; HybridNonlinearFactor mixtureFactor(m, factors); return mixtureFactor; } /// @brief Perform smoother update and optimize the graph. clock_t smootherUpdate(size_t maxNrHypotheses) { std::cout << "Smoother update: " << newFactors_.size() << std::endl; gttic_(SmootherUpdate); clock_t beforeUpdate = clock(); smoother_.update(newFactors_, initial_, maxNrHypotheses); clock_t afterUpdate = clock(); allFactors_.push_back(newFactors_); newFactors_.resize(0); return afterUpdate - beforeUpdate; } /// @brief Re-linearize, solve ALL, and re-initialize smoother. clock_t reInitialize() { std::cout << "================= Re-Initialize: " << allFactors_.size() << std::endl; clock_t beforeUpdate = clock(); allFactors_ = allFactors_.restrict(smoother_.fixedValues()); auto linearized = allFactors_.linearize(initial_); auto bayesNet = linearized->eliminateSequential(); HybridValues delta = bayesNet->optimize(); initial_ = initial_.retract(delta.continuous()); smoother_.reInitialize(std::move(*bayesNet)); clock_t afterUpdate = clock(); std::cout << "Took " << (afterUpdate - beforeUpdate) / CLOCKS_PER_SEC << " seconds." << std::endl; return afterUpdate - beforeUpdate; } public: /// Construct with filename of experiment to run explicit Experiment(const std::string& filename) : dataset_(filename), smoother_(marginalThreshold) {} /// @brief Run the main experiment with a given maxLoopCount. void run() { // Initialize local variables size_t discreteCount = 0, index = 0, loopCount = 0, updateCount = 0; std::list timeList; // Set up initial prior Pose2 priorPose(0, 0, 0); initial_.insert(X(0), priorPose); newFactors_.push_back( PriorFactor(X(0), priorPose, kPriorNoiseModel)); // Initial update auto time = smootherUpdate(maxNrHypotheses); std::vector> smootherUpdateTimes; smootherUpdateTimes.push_back({index, time}); // Flag to decide whether to run smoother update size_t numberOfHybridFactors = 0; // Start main loop Values result; size_t keyS = 0, keyT = 0; clock_t startTime = clock(); std::vector poseArray; std::pair keys; while (dataset_.next(&poseArray, &keys) && index < maxLoopCount) { keyS = keys.first; keyT = keys.second; size_t numMeasurements = poseArray.size(); // Take the first one as the initial estimate Pose2 odomPose = poseArray[0]; if (keyS == keyT - 1) { // Odometry factor if (numMeasurements > 1) { // Add hybrid factor DiscreteKey m(M(discreteCount), numMeasurements); HybridNonlinearFactor mixtureFactor = hybridOdometryFactor(numMeasurements, keyS, keyT, m, poseArray); newFactors_.push_back(mixtureFactor); discreteCount++; numberOfHybridFactors += 1; std::cout << "mixtureFactor: " << keyS << " " << keyT << std::endl; } else { newFactors_.add(BetweenFactor(X(keyS), X(keyT), odomPose, kPoseNoiseModel)); } // Insert next pose initial guess initial_.insert(X(keyT), initial_.at(X(keyS)) * odomPose); } else { // Loop closure HybridNonlinearFactor loopFactor = hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose); // print loop closure event keys: std::cout << "Loop closure: " << keyS << " " << keyT << std::endl; newFactors_.add(loopFactor); numberOfHybridFactors += 1; loopCount++; } if (numberOfHybridFactors >= updateFrequency) { auto time = smootherUpdate(maxNrHypotheses); smootherUpdateTimes.push_back({index, time}); numberOfHybridFactors = 0; updateCount++; if (updateCount % reLinearizationFrequency == 0) { reInitialize(); } } // Record timing for odometry edges only if (keyS == keyT - 1) { clock_t curTime = clock(); timeList.push_back(curTime - startTime); } // Print some status every 100 steps if (index % 100 == 0) { std::cout << "Index: " << index << std::endl; if (!timeList.empty()) { std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC << " seconds" << std::endl; // delta.discrete().print("The Discrete Assignment"); tictoc_finishedIteration_(); tictoc_print_(); } } index++; } // Final update time = smootherUpdate(maxNrHypotheses); smootherUpdateTimes.push_back({index, time}); // Final optimize gttic_(HybridSmootherOptimize); HybridValues delta = smoother_.optimize(); gttoc_(HybridSmootherOptimize); result.insert_or_assign(initial_.retract(delta.continuous())); std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta) << std::endl; clock_t endTime = clock(); clock_t totalTime = endTime - startTime; std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds" << std::endl; // Write results to file writeResult(result, keyT + 1, "Hybrid_City10000.txt"); // Write timing info to file std::ofstream outfileTime; std::string timeFileName = "Hybrid_City10000_time.txt"; outfileTime.open(timeFileName); for (auto accTime : timeList) { outfileTime << accTime / CLOCKS_PER_SEC << std::endl; } outfileTime.close(); std::cout << "Output " << timeFileName << " file." << std::endl; std::ofstream timingFile; std::string timingFileName = "Hybrid_City10000_timing.txt"; timingFile.open(timingFileName); for (size_t i = 0; i < smootherUpdateTimes.size(); i++) { auto p = smootherUpdateTimes.at(i); timingFile << p.first << ", " << p.second / CLOCKS_PER_SEC << std::endl; } timingFile.close(); std::cout << "Wrote timing information to " << timingFileName << std::endl; } }; /* ************************************************************************* */ // Function to parse command-line arguments void parseArguments(int argc, char* argv[], size_t& maxLoopCount, size_t& updateFrequency, size_t& maxNrHypotheses) { for (int i = 1; i < argc; ++i) { std::string arg = argv[i]; if (arg == "--max-loop-count" && i + 1 < argc) { maxLoopCount = std::stoul(argv[++i]); } else if (arg == "--update-frequency" && i + 1 < argc) { updateFrequency = std::stoul(argv[++i]); } else if (arg == "--max-nr-hypotheses" && i + 1 < argc) { maxNrHypotheses = std::stoul(argv[++i]); } else if (arg == "--help") { std::cout << "Usage: " << argv[0] << " [options]\n" << "Options:\n" << " --max-loop-count Set the maximum loop " "count (default: 3000)\n" << " --update-frequency Set the update frequency " "(default: 3)\n" << " --max-nr-hypotheses Set the maximum number of " "hypotheses (default: 10)\n" << " --help Show this help message\n"; std::exit(0); } } } /* ************************************************************************* */ // Main function int main(int argc, char* argv[]) { Experiment experiment(findExampleDataFile("T1_city10000_04.txt")); // Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only // Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only // Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + // Type #3 // Parse command-line arguments parseArguments(argc, argv, experiment.maxLoopCount, experiment.updateFrequency, experiment.maxNrHypotheses); // Run the experiment experiment.run(); return 0; }