/** * @file testBetweenFactorEM.cpp * @brief Unit test for the BetweenFactorEM * @author Vadim Indelman */ #include #include #include #include #include #include #include //#include //#include //#include using namespace std; using namespace gtsam; /* ************************************************************************* */ LieVector predictionError(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactorEM& factor){ gtsam::Values values; values.insert(key1, p1); values.insert(key2, p2); // LieVector err = factor.whitenedError(values); // return err; return LieVector::Expmap(factor.whitenedError(values)); } /* ************************************************************************* */ LieVector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactor& factor){ gtsam::Values values; values.insert(key1, p1); values.insert(key2, p2); // LieVector err = factor.whitenedError(values); // return err; return LieVector::Expmap(factor.whitenedError(values)); } /* ************************************************************************* */ TEST( BetweenFactorEM, ConstructorAndEquals) { gtsam::Key key1(1); gtsam::Key key2(2); gtsam::Pose2 p1(10.0, 15.0, 0.1); gtsam::Pose2 p2(15.0, 15.0, 0.3); gtsam::Pose2 noise(0.5, 0.4, 0.01); gtsam::Pose2 rel_pose_ideal = p1.between(p2); gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise); SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 0.5, 0.5, 0.05))); SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 5, 5, 1.0))); double prior_outlier = 0.5; double prior_inlier = 0.5; // Constructor BetweenFactorEM f(key1, key2, rel_pose_msr, model_inlier, model_outlier, prior_inlier, prior_outlier); BetweenFactorEM g(key1, key2, rel_pose_msr, model_inlier, model_outlier, prior_inlier, prior_outlier); // Equals CHECK(assert_equal(f, g, 1e-5)); } /* ************************************************************************* */ TEST( BetweenFactorEM, EvaluateError) { gtsam::Key key1(1); gtsam::Key key2(2); // Inlier test gtsam::Pose2 p1(10.0, 15.0, 0.1); gtsam::Pose2 p2(15.0, 15.0, 0.3); gtsam::Pose2 noise(0.5, 0.4, 0.01); gtsam::Pose2 rel_pose_ideal = p1.between(p2); gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise); SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 0.5, 0.5, 0.05))); SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector_(3, 50.0, 50.0, 10.0))); gtsam::Values values; values.insert(key1, p1); values.insert(key2, p2); double prior_outlier = 0.5; double prior_inlier = 0.5; BetweenFactorEM f(key1, key2, rel_pose_msr, model_inlier, model_outlier, prior_inlier, prior_outlier); Vector actual_err_wh = f.whitenedError(values); Vector actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); Vector actual_err_wh_outlier = Vector_(3, actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); // in case of inlier, inlier-mode whitented error should be dominant assert(actual_err_wh_inlier.norm() > 1000.0*actual_err_wh_outlier.norm()); cout << "Inlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "< g(key1, key2, rel_pose_msr_test2, model_inlier, model_outlier, prior_inlier, prior_outlier); actual_err_wh = g.whitenedError(values); actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); actual_err_wh_outlier = Vector_(3, actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]); // in case of outlier, outlier-mode whitented error should be dominant assert(actual_err_wh_inlier.norm() < 1000.0*actual_err_wh_outlier.norm()); cout << "Outlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "< h_EM(key1, key2, rel_pose_msr, model_inlier, model_outlier, prior_inlier, prior_outlier); actual_err_wh = h_EM.whitenedError(values); actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); BetweenFactor h(key1, key2, rel_pose_msr, model_inlier ); Vector actual_err_wh_stnd = h.whitenedError(values); cout<<"actual_err_wh: "< f(key1, key2, rel_pose_msr, model_inlier, model_outlier, prior_inlier, prior_outlier); std::vector H_actual(2); Vector actual_err_wh = f.whitenedError(values, H_actual); Matrix H1_actual = H_actual[0]; Matrix H2_actual = H_actual[1]; // compare to standard between factor BetweenFactor h(key1, key2, rel_pose_msr, model_inlier ); Vector actual_err_wh_stnd = h.whitenedError(values); Vector actual_err_wh_inlier = Vector_(3, actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]); CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8)); std::vector H_actual_stnd_unwh(2); (void)h.unwhitenedError(values, H_actual_stnd_unwh); Matrix H1_actual_stnd_unwh = H_actual_stnd_unwh[0]; Matrix H2_actual_stnd_unwh = H_actual_stnd_unwh[1]; Matrix H1_actual_stnd = model_inlier->Whiten(H1_actual_stnd_unwh); Matrix H2_actual_stnd = model_inlier->Whiten(H2_actual_stnd_unwh); // CHECK( assert_equal(H1_actual_stnd, H1_actual, 1e-8)); // CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8)); double stepsize = 1.0e-9; Matrix H1_expected = gtsam::numericalDerivative11(boost::bind(&predictionError, _1, p2, key1, key2, f), p1, stepsize); Matrix H2_expected = gtsam::numericalDerivative11(boost::bind(&predictionError, p1, _1, key1, key2, f), p2, stepsize); // try to check numerical derivatives of a standard between factor Matrix H1_expected_stnd = gtsam::numericalDerivative11(boost::bind(&predictionError_standard, _1, p2, key1, key2, h), p1, stepsize); CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5)); CHECK( assert_equal(H1_expected, H1_actual, 1e-8)); CHECK( assert_equal(H2_expected, H2_actual, 1e-8)); } /* ************************************************************************* */ TEST( InertialNavFactor, Equals) { // gtsam::Key Pose1(11); // gtsam::Key Pose2(12); // gtsam::Key Vel1(21); // gtsam::Key Vel2(22); // gtsam::Key Bias1(31); // // Vector measurement_acc(Vector_(3,0.1,0.2,0.4)); // Vector measurement_gyro(Vector_(3, -0.2, 0.5, 0.03)); // // double measurement_dt(0.1); // Vector world_g(Vector_(3, 0.0, 0.0, 9.81)); // Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system // gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5)); // gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth); // // SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1)); // // InertialNavFactor f(Pose1, Vel1, Bias1, Pose2, Vel2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // InertialNavFactor g(Pose1, Vel1, Bias1, Pose2, Vel2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // CHECK(assert_equal(f, g, 1e-5)); } /* ************************************************************************* */ TEST( InertialNavFactor, Predict) { // gtsam::Key PoseKey1(11); // gtsam::Key PoseKey2(12); // gtsam::Key VelKey1(21); // gtsam::Key VelKey2(22); // gtsam::Key BiasKey1(31); // // double measurement_dt(0.1); // Vector world_g(Vector_(3, 0.0, 0.0, 9.81)); // Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system // gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5)); // gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth); // // SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1)); // // // // First test: zero angular motion, some acceleration // Vector measurement_acc(Vector_(3,0.1,0.2,0.3-9.81)); // Vector measurement_gyro(Vector_(3, 0.0, 0.0, 0.0)); // // InertialNavFactor f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // // Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00)); // LieVector Vel1(3, 0.50, -0.50, 0.40); // imuBias::ConstantBias Bias1; // Pose3 expectedPose2(Rot3(), Point3(2.05, 0.95, 3.04)); // LieVector expectedVel2(3, 0.51, -0.48, 0.43); // Pose3 actualPose2; // LieVector actualVel2; // f.predict(Pose1, Vel1, Bias1, actualPose2, actualVel2); // // CHECK(assert_equal(expectedPose2, actualPose2, 1e-5)); // CHECK(assert_equal(expectedVel2, actualVel2, 1e-5)); } /* ************************************************************************* */ TEST( InertialNavFactor, ErrorPosVel) { // gtsam::Key PoseKey1(11); // gtsam::Key PoseKey2(12); // gtsam::Key VelKey1(21); // gtsam::Key VelKey2(22); // gtsam::Key BiasKey1(31); // // double measurement_dt(0.1); // Vector world_g(Vector_(3, 0.0, 0.0, 9.81)); // Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system // gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5)); // gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth); // // SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1)); // // // // First test: zero angular motion, some acceleration // Vector measurement_acc(Vector_(3,0.1,0.2,0.3-9.81)); // Vector measurement_gyro(Vector_(3, 0.0, 0.0, 0.0)); // // InertialNavFactor f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // // Pose3 Pose1(Rot3(), Point3(2.00, 1.00, 3.00)); // Pose3 Pose2(Rot3(), Point3(2.05, 0.95, 3.04)); // LieVector Vel1(3, 0.50, -0.50, 0.40); // LieVector Vel2(3, 0.51, -0.48, 0.43); // imuBias::ConstantBias Bias1; // // Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2)); // Vector ExpectedErr(zero(9)); // // CHECK(assert_equal(ExpectedErr, ActualErr, 1e-5)); } /* ************************************************************************* */ TEST( InertialNavFactor, ErrorRot) { // gtsam::Key PoseKey1(11); // gtsam::Key PoseKey2(12); // gtsam::Key VelKey1(21); // gtsam::Key VelKey2(22); // gtsam::Key BiasKey1(31); // // double measurement_dt(0.1); // Vector world_g(Vector_(3, 0.0, 0.0, 9.81)); // Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system // gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5)); // gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth); // // SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1)); // // // Second test: zero angular motion, some acceleration // Vector measurement_acc(Vector_(3,0.0,0.0,0.0-9.81)); // Vector measurement_gyro(Vector_(3, 0.1, 0.2, 0.3)); // // InertialNavFactor f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // // Pose3 Pose1(Rot3(), Point3(2.0,1.0,3.0)); // Pose3 Pose2(Rot3::Expmap(measurement_gyro*measurement_dt), Point3(2.0,1.0,3.0)); // LieVector Vel1(3,0.0,0.0,0.0); // LieVector Vel2(3,0.0,0.0,0.0); // imuBias::ConstantBias Bias1; // // Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2)); // Vector ExpectedErr(zero(9)); // // CHECK(assert_equal(ExpectedErr, ActualErr, 1e-5)); } /* ************************************************************************* */ TEST( InertialNavFactor, ErrorRotPosVel) { // gtsam::Key PoseKey1(11); // gtsam::Key PoseKey2(12); // gtsam::Key VelKey1(21); // gtsam::Key VelKey2(22); // gtsam::Key BiasKey1(31); // // double measurement_dt(0.1); // Vector world_g(Vector_(3, 0.0, 0.0, 9.81)); // Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system // gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5)); // gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth); // // SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1)); // // // Second test: zero angular motion, some acceleration - generated in matlab // Vector measurement_acc(Vector_(3, 6.501390843381716, -6.763926150509185, -2.300389940090343)); // Vector measurement_gyro(Vector_(3, 0.1, 0.2, 0.3)); // // InertialNavFactor f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // // Rot3 R1(0.487316618, 0.125253866, 0.86419557, // 0.580273724, 0.693095498, -0.427669306, // -0.652537293, 0.709880342, 0.265075427); // Point3 t1(2.0,1.0,3.0); // Pose3 Pose1(R1, t1); // LieVector Vel1(3,0.5,-0.5,0.4); // Rot3 R2(0.473618898, 0.119523052, 0.872582019, // 0.609241153, 0.67099888, -0.422594037, // -0.636011287, 0.731761397, 0.244979388); // Point3 t2(2.052670960415706, 0.977252139079380, 2.942482135362800); // Pose3 Pose2(R2, t2); // LieVector Vel2(3,0.510000000000000, -0.480000000000000, 0.430000000000000); // imuBias::ConstantBias Bias1; // // Vector ActualErr(f.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2)); // Vector ExpectedErr(zero(9)); // // CHECK(assert_equal(ExpectedErr, ActualErr, 1e-5)); } /* ************************************************************************* */ TEST (InertialNavFactor, Jacobian ) { // gtsam::Key PoseKey1(11); // gtsam::Key PoseKey2(12); // gtsam::Key VelKey1(21); // gtsam::Key VelKey2(22); // gtsam::Key BiasKey1(31); // // double measurement_dt(0.01); // Vector world_g(Vector_(3, 0.0, 0.0, 9.81)); // Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system // gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5)); // gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth); // // SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1)); // // Vector measurement_acc(Vector_(3, 6.501390843381716, -6.763926150509185, -2.300389940090343)); // Vector measurement_gyro(Vector_(3, 3.14, 3.14/2, -3.14)); // // InertialNavFactor factor(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model); // // Rot3 R1(0.487316618, 0.125253866, 0.86419557, // 0.580273724, 0.693095498, -0.427669306, // -0.652537293, 0.709880342, 0.265075427); // Point3 t1(2.0,1.0,3.0); // Pose3 Pose1(R1, t1); // LieVector Vel1(3,0.5,-0.5,0.4); // Rot3 R2(0.473618898, 0.119523052, 0.872582019, // 0.609241153, 0.67099888, -0.422594037, // -0.636011287, 0.731761397, 0.244979388); // Point3 t2(2.052670960415706, 0.977252139079380, 2.942482135362800); // Pose3 Pose2(R2, t2); // LieVector Vel2(3,0.510000000000000, -0.480000000000000, 0.430000000000000); // imuBias::ConstantBias Bias1; // // Matrix H1_actual, H2_actual, H3_actual, H4_actual, H5_actual; // // Vector ActualErr(factor.evaluateError(Pose1, Vel1, Bias1, Pose2, Vel2, H1_actual, H2_actual, H3_actual, H4_actual, H5_actual)); // // // Checking for Pose part in the jacobians // // ****** // Matrix H1_actualPose(H1_actual.block(0,0,6,H1_actual.cols())); // Matrix H2_actualPose(H2_actual.block(0,0,6,H2_actual.cols())); // Matrix H3_actualPose(H3_actual.block(0,0,6,H3_actual.cols())); // Matrix H4_actualPose(H4_actual.block(0,0,6,H4_actual.cols())); // Matrix H5_actualPose(H5_actual.block(0,0,6,H5_actual.cols())); // // // Calculate the Jacobian matrices H1 until H5 using the numerical derivative function // gtsam::Matrix H1_expectedPose, H2_expectedPose, H3_expectedPose, H4_expectedPose, H5_expectedPose; // H1_expectedPose = gtsam::numericalDerivative11(boost::bind(&predictionErrorPose, _1, Vel1, Bias1, Pose2, Vel2, factor), Pose1); // H2_expectedPose = gtsam::numericalDerivative11(boost::bind(&predictionErrorPose, Pose1, _1, Bias1, Pose2, Vel2, factor), Vel1); // H3_expectedPose = gtsam::numericalDerivative11(boost::bind(&predictionErrorPose, Pose1, Vel1, _1, Pose2, Vel2, factor), Bias1); // H4_expectedPose = gtsam::numericalDerivative11(boost::bind(&predictionErrorPose, Pose1, Vel1, Bias1, _1, Vel2, factor), Pose2); // H5_expectedPose = gtsam::numericalDerivative11(boost::bind(&predictionErrorPose, Pose1, Vel1, Bias1, Pose2, _1, factor), Vel2); // // // Verify they are equal for this choice of state // CHECK( gtsam::assert_equal(H1_expectedPose, H1_actualPose, 1e-6)); // CHECK( gtsam::assert_equal(H2_expectedPose, H2_actualPose, 1e-6)); // CHECK( gtsam::assert_equal(H3_expectedPose, H3_actualPose, 1e-6)); // CHECK( gtsam::assert_equal(H4_expectedPose, H4_actualPose, 1e-6)); // CHECK( gtsam::assert_equal(H5_expectedPose, H5_actualPose, 1e-6)); // // // Checking for Vel part in the jacobians // // ****** // Matrix H1_actualVel(H1_actual.block(6,0,3,H1_actual.cols())); // Matrix H2_actualVel(H2_actual.block(6,0,3,H2_actual.cols())); // Matrix H3_actualVel(H3_actual.block(6,0,3,H3_actual.cols())); // Matrix H4_actualVel(H4_actual.block(6,0,3,H4_actual.cols())); // Matrix H5_actualVel(H5_actual.block(6,0,3,H5_actual.cols())); // // // Calculate the Jacobian matrices H1 until H5 using the numerical derivative function // gtsam::Matrix H1_expectedVel, H2_expectedVel, H3_expectedVel, H4_expectedVel, H5_expectedVel; // H1_expectedVel = gtsam::numericalDerivative11(boost::bind(&predictionErrorVel, _1, Vel1, Bias1, Pose2, Vel2, factor), Pose1); // H2_expectedVel = gtsam::numericalDerivative11(boost::bind(&predictionErrorVel, Pose1, _1, Bias1, Pose2, Vel2, factor), Vel1); // H3_expectedVel = gtsam::numericalDerivative11(boost::bind(&predictionErrorVel, Pose1, Vel1, _1, Pose2, Vel2, factor), Bias1); // H4_expectedVel = gtsam::numericalDerivative11(boost::bind(&predictionErrorVel, Pose1, Vel1, Bias1, _1, Vel2, factor), Pose2); // H5_expectedVel = gtsam::numericalDerivative11(boost::bind(&predictionErrorVel, Pose1, Vel1, Bias1, Pose2, _1, factor), Vel2); // // // Verify they are equal for this choice of state // CHECK( gtsam::assert_equal(H1_expectedVel, H1_actualVel, 1e-6)); // CHECK( gtsam::assert_equal(H2_expectedVel, H2_actualVel, 1e-6)); // CHECK( gtsam::assert_equal(H3_expectedVel, H3_actualVel, 1e-6)); // CHECK( gtsam::assert_equal(H4_expectedVel, H4_actualVel, 1e-6)); // CHECK( gtsam::assert_equal(H5_expectedVel, H5_actualVel, 1e-6)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */