/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SmartProjectionFactorExample_kitti.cpp * @brief Example usage of SmartProjectionFactor using real dataset in a non-batch fashion * @date August, 2013 * @author Zsolt Kira */ // Use a map to store landmark/smart factor pairs #include // Both relative poses and recovered trajectory poses will be stored as Pose3 objects #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // We want to use iSAM2 to solve the range-SLAM problem incrementally #include // iSAM2 requires as input a set set of new factors to be added stored in a factor graph, // and initial guesses for any new variables used in the added factors #include // We will use a non-linear solver to batch-initialize from the first 150 frames #include #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics SLAM problems. #include #include #include // Standard headers, added last, so we know headers above work on their own #include #include #include #include #include using namespace std; using namespace gtsam; using namespace boost::assign; namespace NM = gtsam::noiseModel; using symbol_shorthand::X; using symbol_shorthand::L; typedef PriorFactor Pose3Prior; typedef SmartProjectionFactor SmartFactor; typedef GenericProjectionFactor ProjectionFactor; typedef FastMap > SmartFactorToStateMap; typedef FastMap > SmartFactorMap; typedef FastMap > > ProjectionFactorMap; typedef FastMap OrderingMap; bool debug = false; //// Helper functions taken from VO code // Loaded all pose values into list Values::shared_ptr loadPoseValues(const string& filename) { Values::shared_ptr values(new Values()); bool addNoise = false; std::cout << "PARAM Noise: " << addNoise << std::endl; // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3)); // read in camera poses string full_filename = filename; ifstream fin; fin.open(full_filename.c_str()); int pose_id; while (fin >> pose_id) { double pose_matrix[16]; for (int i = 0; i < 16; i++) { fin >> pose_matrix[i]; } if (addNoise) { values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)).compose(noise_pose)); } else { values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix))); } } fin.close(); return values; } // Load specific pose values that are in key list Values::shared_ptr loadPoseValues(const string& filename, list keys) { Values::shared_ptr values(new Values()); std::list::iterator kit; // read in camera poses string full_filename = filename; ifstream fin; fin.open(full_filename.c_str()); int pose_id; while (fin >> pose_id) { double pose_matrix[16]; for (int i = 0; i < 16; i++) { fin >> pose_matrix[i]; } kit = find (keys.begin(), keys.end(), X(pose_id)); if (kit != keys.end()) { //cout << " Adding " << X(pose_id) << endl; values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix))); } } fin.close(); return values; } // Load calibration info Cal3_S2::shared_ptr loadCalibration(const string& filename) { string full_filename = filename; ifstream fin; fin.open(full_filename.c_str()); // try loading from parent directory as backup if(!fin) { cerr << "Could not load " << full_filename; exit(1); } double fx, fy, s, u, v, b; fin >> fx >> fy >> s >> u >> v >> b; fin.close(); Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u, v)); return K; } void writeValues(string directory_, const Values& values){ string filename = directory_ + "out_camera_poses.txt"; ofstream fout; fout.open(filename.c_str()); fout.precision(20); // write out camera poses BOOST_FOREACH(Values::ConstFiltered::value_type key_value, values.filter()) { fout << Symbol(key_value.key).index(); const gtsam::Matrix& matrix= key_value.value.matrix(); for (size_t row=0; row < 4; ++row) { for (size_t col=0; col < 4; ++col) { fout << " " << matrix(row, col); } } fout << endl; } fout.close(); if(values.filter().size() > 0) { // write landmarks filename = directory_ + "landmarks.txt"; fout.open(filename.c_str()); BOOST_FOREACH(Values::ConstFiltered::value_type key_value, values.filter()) { fout << Symbol(key_value.key).index(); fout << " " << key_value.value.x(); fout << " " << key_value.value.y(); fout << " " << key_value.value.z(); fout << endl; } fout.close(); } } void addTriangulatedLandmarks(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr loadedValues, gtsam::Values::shared_ptr graphValues, boost::shared_ptr K, ProjectionFactorMap &projectionFactors, vector &cameraPoseKeys, vector &landmarkKeys) { std::vector > projectionFactorVector; std::vector >::iterator vfit; Point3 point; Pose3 cameraPose; ProjectionFactorMap::iterator pfit; if (debug) graphValues->print("graphValues \n"); if (debug) std::cout << " # END VALUES: " << std::endl; // Iterate through all landmarks if (debug) std::cout << " PROJECTION FACTOR GROUPED: " << projectionFactors.size(); int numProjectionFactors = 0; int numProjectionFactorsAdded = 0; int numFailures = 0; for (pfit = projectionFactors.begin(); pfit != projectionFactors.end(); pfit++) { projectionFactorVector = (*pfit).second; std::vector cameraPoses; std::vector measured; // Iterate through projection factors for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) { numProjectionFactors++; if (debug) std::cout << "ProjectionFactor: " << std::endl; if (debug) (*vfit)->print("ProjectionFactor"); // Iterate through poses cameraPoses.push_back( loadedValues->at((*vfit)->key1() ) ); measured.push_back( (*vfit)->measured() ); } // Triangulate landmark based on set of poses and measurements if (debug) std::cout << "Triangulating: " << std::endl; try { point = triangulatePoint3(cameraPoses, measured, *K); if (debug) std::cout << "Triangulation succeeded: " << point << std::endl; } catch( TriangulationUnderconstrainedException& e) { if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl; if (debug) { BOOST_FOREACH(const Pose3& pose, cameraPoses) { std::cout << " Pose: " << pose << std::endl; } } numFailures++; continue; } catch( TriangulationCheiralityException& e) { if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl; if (debug) { std::cout << "Triangulation failed because of cheirality exception" << std::endl; BOOST_FOREACH(const Pose3& pose, cameraPoses) { std::cout << " Pose: " << pose << std::endl; } } numFailures++; continue; } // Add projection factors and pose values for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) { numProjectionFactorsAdded++; if (debug) std::cout << "Adding factor " << std::endl; if (debug) (*vfit)->print("Projection Factor"); graph.push_back( (*vfit) ); if (!graphValues->exists( (*vfit)->key1()) && loadedValues->exists((*vfit)->key1())) { graphValues->insert((*vfit)->key1(), loadedValues->at((*vfit)->key1())); cameraPoseKeys.push_back( (*vfit)->key1() ); } } // Add landmark value if (debug) std::cout << "Adding value " << std::endl; graphValues->insert( projectionFactorVector[0]->key2(), point); // add point; landmarkKeys.push_back( projectionFactorVector[0]->key2() ); } if (1||debug) std::cout << " # PROJECTION FACTORS CALCULATED: " << numProjectionFactors; if (1||debug) std::cout << " # PROJECTION FACTORS ADDED: " << numProjectionFactorsAdded; if (1||debug) std::cout << " # FAILURES: " << numFailures; } void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr &ordering) { // Optimization parameters LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; params.lambdaInitial = 1; params.lambdaFactor = 10; // Profile a single iteration // params.maxIterations = 1; params.maxIterations = 100; std::cout << " LM max iterations: " << params.maxIterations << std::endl; // // params.relativeErrorTol = 1e-5; params.absoluteErrorTol = 1.0; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY; cout << "Graph size: " << graph.size() << endl; cout << "Number of variables: " << graphValues->size() << endl; std::cout << " OPTIMIZATION " << std::endl; std::cout << "\n\n=================================================\n\n"; if (debug) { graph.print("thegraph"); } std::cout << "\n\n=================================================\n\n"; if (ordering && ordering->size() > 0) { if (debug) { std::cout << "Have an ordering\n" << std::endl; BOOST_FOREACH(const Key& key, *ordering) { std::cout << key << " "; } std::cout << std::endl; } params.ordering = *ordering; //for (int i = 0; i < 3; i++) { LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params); gttic_(GenericProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(GenericProjectionFactorExample_kitti); tictoc_finishedIteration_(); //} } else { std::cout << "Using COLAMD ordering\n" << std::endl; //boost::shared_ptr ordering2(new Ordering()); ordering = ordering2; //for (int i = 0; i < 3; i++) { LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params); // params = optimizer.ensureHasOrdering(params, graph); gttic_(SmartProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(SmartProjectionFactorExample_kitti); tictoc_finishedIteration_(); //} //*ordering = params.ordering; std::cout << "Graph size: " << graph.size() << " ORdering: " << params.ordering->size() << std::endl; ordering = boost::make_shared(*(new Ordering())); *ordering = *params.ordering; } } void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) { GaussNewtonParams params; //params.maxIterations = 1; params.verbosity = NonlinearOptimizerParams::DELTA; GaussNewtonOptimizer optimizer(graph, *graphValues, params); gttic_(SmartProjectionFactorExample_kitti); result = optimizer.optimize(); gttoc_(SmartProjectionFactorExample_kitti); tictoc_finishedIteration_(); } void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) { ISAM2 isam; gttic_(SmartProjectionFactorExample_kitti); isam.update(graph, *graphValues); result = isam.calculateEstimate(); gttoc_(SmartProjectionFactorExample_kitti); tictoc_finishedIteration_(); } // main int main(int argc, char** argv) { unsigned int maxNumLandmarks = 389007; //100000000; // 309393 // (loop_closure_merged) //37106 //(reduced kitti); unsigned int maxNumPoses = 45400; //3541 // Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used bool useSmartProjectionFactor = true; bool useTriangulation = true; bool useLM = true; int landmarkFirstOrderingMethod = 2; // 0 - COLAMD, 1 - landmark first, poses from smart factor, 2 - landmark first through constrained ordering double KittiLinThreshold = -1.0; // 0.005; // double KittiRankTolerance = 1.0; bool incrementalFlag = false; int optSkip = 200; // we optimize the graph every optSkip poses std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl; std::cout << "PARAM Triangulation: " << useTriangulation << std::endl; std::cout << "PARAM LM: " << useLM << std::endl; std::cout << "PARAM KittiLinThreshold (negative is disabled): " << KittiLinThreshold << std::endl; // Get home directory and dataset string HOME = getenv("HOME"); //string input_dir = HOME + "/data/KITTI_00_200/"; string input_dir = HOME + "/data/kitti/loop_closures_merged/"; // 399997 landmarks, 4541 poses //string input_dir = HOME + "/data/kitti_00_full_dirty/"; static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2)); static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01))); //static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9))); NonlinearFactorGraph graphSmart, graphProjection; // Load calibration //Cal3_S2::shared_ptr K(new Cal3_S2(718.856, 718.856, 0.0, 607.1928, 185.2157)); boost::shared_ptr K = loadCalibration(input_dir+"calibration.txt"); K->print("Calibration"); // Read in kitti dataset ifstream fin; fin.open((input_dir+"stereo_factors.txt").c_str()); if(!fin) { cerr << "Could not open stereo_factors.txt" << endl; exit(1); } // Load all values, add priors gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values()); gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values()); gtsam::Values::shared_ptr loadedValues = loadPoseValues(input_dir+"camera_poses.txt"); //graph.push_back(Pose3Prior(X(0),loadedValues->at(X(0)), prior_model)); //graph.push_back(Pose3Prior(X(1),loadedValues->at(X(1)), prior_model)); // read all measurements tracked by VO stereo cout << "Loading stereo_factors.txt" << endl; unsigned int count = 0; Key currentLandmark = 0; unsigned int numLandmarks = 0, numPoses = 0; Key r, l; double uL, uR, v, x, y, z; std::vector views; std::vector landmarkKeys, cameraPoseKeys; std::vector measurements; Values values; SmartFactorToStateMap smartFactorStates; SmartFactorMap smartFactors; ProjectionFactorMap projectionFactors; Values result; int totalNumMeasurements = 0; bool optimized = false; boost::shared_ptr ordering, landmarkFirstOrdering(new Ordering()); // main loop: reads measurements and adds factors (also performs optimization if desired) while (fin >> r >> l >> uL >> uR >> v >> x >> y >> z) { if (debug) fprintf(stderr,"Landmark %ld\n", l); if (debug) fprintf(stderr,"Line %d: %d landmarks, (max landmarks %d), %d poses, max poses %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses); // Optimize if have a certain number of poses/landmarks, or we want to do incremental inference if (currentLandmark != l && (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks || (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0 )) ) { if (debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses); if (debug) cout << "Adding triangulated landmarks, graph size: " << graphProjection.size() << endl; //if (useSmartProjectionFactor == false && useTriangulation) { addTriangulatedLandmarks(graphProjection, loadedValues, graphProjectionValues, K, projectionFactors, cameraPoseKeys, landmarkKeys); //} if (debug) cout << "Adding triangulated landmarks, graph size after: " << graphProjection.size() << endl; if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses); // Optimize every optSkip poses if we want to do incremental inference if (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0 ){ // optimize if (useLM) optimizeGraphLM(graphSmart, graphSmartValues, result, ordering); else optimizeGraphISAM2(graphSmart, graphSmartValues, result); if(incrementalFlag) *graphSmartValues = result; // we use optimized solution as initial guess for the next one optimized = true; if (1||debug) std::cout << "Landmark Keys: " << landmarkKeys.size() << " Pose Keys: " << cameraPoseKeys.size() << std::endl; if (1||debug) std::cout << "Pose ordering: " << ordering->size() << std::endl; if (landmarkFirstOrderingMethod == 1) { // Add landmark keys first for ordering BOOST_FOREACH(const Key& key, landmarkKeys) { landmarkFirstOrdering->push_back(key); } // Add COLAMD on pose keys to ordering //Ordering::iterator oit; BOOST_FOREACH(const Key& key, *ordering) { landmarkFirstOrdering->push_back(key); } } else if (landmarkFirstOrderingMethod == 2) { OrderingMap orderingMap; // Add landmark keys first for ordering BOOST_FOREACH(const Key& key, landmarkKeys) { orderingMap.insert( make_pair(key, 1) ); } //Ordering::iterator oit; BOOST_FOREACH(const Key& key, *ordering) { orderingMap.insert( make_pair(key, 2) ); } *landmarkFirstOrdering = graphProjection.orderingCOLAMDConstrained(orderingMap); } if (1||debug) std::cout << "Optimizing landmark first " << landmarkFirstOrdering->size() << std::endl; optimizeGraphLM(graphProjection, graphProjectionValues, result, landmarkFirstOrdering); // Only process first N measurements (for development/debugging) if ( (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks) ) { if (debug) fprintf(stderr,"%d: BREAKING %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses); break; } if(!incrementalFlag) break; } // add factors // SMART FACTORS .. if (useSmartProjectionFactor) { // Check if landmark exists in mapping SmartFactorToStateMap::iterator fsit = smartFactorStates.find(L(l)); SmartFactorMap::iterator fit = smartFactors.find(L(l)); if (fsit != smartFactorStates.end() && fit != smartFactors.end()) { if (debug) fprintf(stderr,"Adding measurement to existing landmark\n"); // Add measurement to smart factor (*fit).second->add(Point2(uL,v), X(r)); totalNumMeasurements++; if (debug) (*fit).second->print(); } else { if (debug) fprintf(stderr,"New landmark (%d,%d)\n", fsit != smartFactorStates.end(), fit != smartFactors.end()); views += X(r); measurements += Point2(uL,v); // This is a new landmark, create a new factor and add to mapping boost::shared_ptr smartFactorState(new SmartProjectionFactorState()); //SmartFactor::shared_ptr smartFactor(new SmartFactor(views, measurements, pixel_sigma, K)); SmartFactor::shared_ptr smartFactor(new SmartFactor(views, measurements, pixel_sigma, K, KittiRankTolerance, KittiLinThreshold)); smartFactorStates.insert( make_pair(L(l), smartFactorState) ); smartFactors.insert( make_pair(L(l), smartFactor) ); graphSmart.push_back(smartFactor); numLandmarks++; //landmarkKeys.push_back( L(l) ); totalNumMeasurements++; views.clear(); measurements.clear(); } // Add initial pose value if pose does not exist if (!graphSmartValues->exists(X(r)) && loadedValues->exists(X(r))) { graphSmartValues->insert(X(r), loadedValues->at(X(r))); numPoses++; optimized = false; } } else { // or STANDARD PROJECTION FACTORS // Create projection factor ProjectionFactor::shared_ptr projectionFactor(new ProjectionFactor(Point2(uL,v), pixel_sigma, X(r), L(l), K)); // Check if landmark exists in mapping ProjectionFactorMap::iterator pfit = projectionFactors.find(L(l)); if (pfit != projectionFactors.end()) { if (debug) fprintf(stderr,"Adding measurement to existing landmark\n"); // Add projection factor to list of projection factors associated with this landmark (*pfit).second.push_back(projectionFactor); } else { if (debug) fprintf(stderr,"New landmark (%d)\n", pfit != projectionFactors.end()); // Create a new vector of projection factors std::vector projectionFactorVector; projectionFactorVector.push_back(projectionFactor); // Insert projection factor to NEW list of projection factors associated with this landmark projectionFactors.insert( make_pair(L(l), projectionFactorVector) ); // Add projection factor to graph //graphProjection.push_back(projectionFactor); // We have a new landmark //numLandmarks++; //landmarkKeys.push_back( L(l) ); } // Add landmark if triangulation is not being used to initialize them if (!useTriangulation) { // For projection factor, landmarks positions are used, but have to be transformed to world coordinates if (graphProjectionValues->exists(L(l)) == boost::none) { Pose3 camera = loadedValues->at(X(r)); Point3 worldPoint = camera.transform_from(Point3(x, y, z)); graphProjectionValues->insert(L(l), worldPoint); // add point; } // Add initial pose value if pose does not exist // Only do this if triangulation is not used. Otherwise, it depends what projection factors are added // based on triangulation success if (!graphProjectionValues->exists(X(r)) && loadedValues->exists(X(r))) { graphProjectionValues->insert(X(r), loadedValues->at(X(r))); cameraPoseKeys.push_back( X(r) ); //numPoses++; } // Add projection factor to graph graphProjection.push_back(projectionFactor); }else { // Alternatively: Triangulate similar to how SmartProjectionFactor does it // We only do this at the end, when all of the camera poses are available // Note we do not add anything to the graph until then, since in some cases // of triangulation failure we cannot add the landmark to the graph } } if (debug) fprintf(stderr,"%d %d\n", count, maxNumLandmarks); if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl; currentLandmark = l; count++; if(count==100000) { cout << "Loading graph smart... " << graphSmart.size() << endl; cout << "Loading graph projection... " << graphProjection.size() << endl; } } } if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses); // if we haven't optimized yet if (!optimized) { if (useSmartProjectionFactor == false && useTriangulation) { addTriangulatedLandmarks(graphSmart, loadedValues, graphSmartValues, K, projectionFactors, cameraPoseKeys, landmarkKeys); } if (useLM) optimizeGraphLM(graphSmart, graphSmartValues, result, ordering); else optimizeGraphISAM2(graphSmart, graphSmartValues, result); optimized = true; } if (useSmartProjectionFactor||debug) std::cout << "TOTAL NUM MEASUREMENTS " << totalNumMeasurements; cout << "===================================================" << endl; //graphSmartValues->print("before optimization "); //result.print("results of kitti optimization "); tictoc_print_(); cout << "===================================================" << endl; writeValues("./", result); if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses); exit(0); }