/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Pose3.cpp * @brief 3D Pose */ #include #include #include #include using namespace std; namespace gtsam { /** Explicit instantiation of base class to export members */ INSTANTIATE_LIE(Pose3); /** instantiate concept checks */ GTSAM_CONCEPT_POSE_INST(Pose3); static const Matrix I3 = eye(3), Z3 = zeros(3, 3); #ifdef CORRECT_POSE3_EXMAP static const _I3=-I3, I6 = eye(6); #endif /* ************************************************************************* */ // Calculate Adjoint map // Ad_pose is 6*6 matrix that when applied to twist xi, returns Ad_pose(xi) // Experimental - unit tests of derivatives based on it do not check out yet Matrix Pose3::AdjointMap() const { const Matrix R = R_.matrix(); const Vector t = t_.vector(); Matrix A = skewSymmetric(t)*R; Matrix DR = collect(2, &R, &Z3); Matrix Dt = collect(2, &A, &R); return gtsam::stack(2, &DR, &Dt); } /* ************************************************************************* */ void Pose3::print(const string& s) const { R_.print(s + ".R"); t_.print(s + ".t"); } /* ************************************************************************* */ bool Pose3::equals(const Pose3& pose, double tol) const { return R_.equals(pose.R_,tol) && t_.equals(pose.t_,tol); } /* ************************************************************************* */ /** Modified from Murray94book version (which assumes w and v normalized?) */ Pose3 Pose3::Expmap(const Vector& xi) { // get angular velocity omega and translational velocity v from twist xi Point3 w(xi(0),xi(1),xi(2)), v(xi(3),xi(4),xi(5)); double theta = w.norm(); if (theta < 1e-10) { static const Rot3 I; return Pose3(I, v); } else { Point3 n(w/theta); // axis unit vector Rot3 R = Rot3::rodriguez(n.vector(),theta); double vn = n.dot(v); // translation parallel to n Point3 n_cross_v = n.cross(v); // points towards axis Point3 t = (n_cross_v - R*n_cross_v)/theta + vn*n; return Pose3(R, t); } } /* ************************************************************************* */ Vector Pose3::Logmap(const Pose3& p) { Vector w = Rot3::Logmap(p.rotation()), T = p.translation().vector(); double t = w.norm(); if (t < 1e-10) return concatVectors(2, &w, &T); else { Matrix W = skewSymmetric(w/t); Matrix Ainv = I3 - (0.5*t)*W + ((2*sin(t)-t*(1+cos(t)))/(2*sin(t))) * (W * W); Vector u = Ainv*T; return concatVectors(2, &w, &u); } } #ifdef CORRECT_POSE3_EXMAP // /* ************************************************************************* */ // // Changes default to use the full verions of expmap/logmap // /* ************************************************************************* */ // Pose3 Retract(const Vector& xi) { // return Pose3::Expmap(xi); // } // // /* ************************************************************************* */ // Vector Unretract(const Pose3& p) { // return Pose3::Logmap(p); // } /* ************************************************************************* */ Pose3 retract(const Vector& d) { return retract(d); } /* ************************************************************************* */ Vector localCoordinates(const Pose3& T1, const Pose3& T2) { return localCoordinates(T2); } #else // /* ************************************************************************* */ // /* incorrect versions for which we know how to compute derivatives */ // Pose3 Pose3::Retract(const Vector& d) { // Vector w = sub(d, 0,3); // Vector u = sub(d, 3,6); // return Pose3(Rot3::Retract(w), Point3::Retract(u)); // } // // /* ************************************************************************* */ // // Log map at identity - return the translation and canonical rotation // // coordinates of a pose. // Vector Pose3::Unretract(const Pose3& p) { // const Vector w = Rot3::Unretract(p.rotation()), u = Point3::Unretract(p.translation()); // return concatVectors(2, &w, &u); // } /** These are the "old-style" expmap and logmap about the specified * pose. Increments the offset and rotation independently given a translation and * canonical rotation coordinates. Created to match ML derivatives, but * superseded by the correct exponential map story in .cpp */ Pose3 Pose3::retract(const Vector& d) const { return Pose3(R_.retract(sub(d, 0, 3)), t_.retract(sub(d, 3, 6))); } /** Independently computes the logmap of the translation and rotation. */ Vector Pose3::localCoordinates(const Pose3& pp) const { const Vector r(R_.localCoordinates(pp.rotation())), t(t_.localCoordinates(pp.translation())); return concatVectors(2, &r, &t); } #endif /* ************************************************************************* */ Matrix Pose3::matrix() const { const Matrix R = R_.matrix(), T = Matrix_(3,1, t_.vector()); const Matrix A34 = collect(2, &R, &T); const Matrix A14 = Matrix_(1,4, 0.0, 0.0, 0.0, 1.0); return gtsam::stack(2, &A34, &A14); } /* ************************************************************************* */ Pose3 Pose3::transform_to(const Pose3& pose) const { Rot3 cRv = R_ * Rot3(pose.R_.inverse()); Point3 t = pose.transform_to(t_); return Pose3(cRv, t); } /* ************************************************************************* */ Point3 Pose3::transform_from(const Point3& p, boost::optional H1, boost::optional H2) const { if (H1) { #ifdef CORRECT_POSE3_EXMAP const Matrix R = R_.matrix(); Matrix DR = R*skewSymmetric(-p.x(), -p.y(), -p.z()); *H1 = collect(2,&DR,&R); #else Matrix DR; R_.rotate(p, DR, boost::none); *H1 = collect(2,&DR,&I3); #endif } if (H2) *H2 = R_.matrix(); return R_ * p + t_; } /* ************************************************************************* */ Point3 Pose3::transform_to(const Point3& p, boost::optional H1, boost::optional H2) const { const Point3 result = R_.unrotate(p - t_); if (H1) { const Point3& q = result; Matrix DR = skewSymmetric(q.x(), q.y(), q.z()); #ifdef CORRECT_POSE3_EXMAP *H1 = collect(2, &DR, &_I3); #else Matrix DT = - R_.transpose(); // negative because of sub *H1 = collect(2,&DR,&DT); #endif } if (H2) *H2 = R_.transpose(); return result; } /* ************************************************************************* */ Pose3 Pose3::compose(const Pose3& p2, boost::optional H1, boost::optional H2) const { if (H1) { #ifdef CORRECT_POSE3_EXMAP *H1 = AdjointMap(inverse(p2)); #else const Rot3& R2 = p2.rotation(); const Point3& t2 = p2.translation(); Matrix DR_R1 = R2.transpose(), DR_t1 = Z3; Matrix DR = collect(2, &DR_R1, &DR_t1); Matrix Dt; transform_from(t2, Dt, boost::none); *H1 = gtsam::stack(2, &DR, &Dt); #endif } if (H2) { #ifdef CORRECT_POSE3_EXMAP *H2 = I6; #else Matrix R1 = rotation().matrix(); Matrix DR = collect(2, &I3, &Z3); Matrix Dt = collect(2, &Z3, &R1); *H2 = gtsam::stack(2, &DR, &Dt); #endif } return (*this) * p2; } /* ************************************************************************* */ Pose3 Pose3::inverse(boost::optional H1) const { if (H1) #ifdef CORRECT_POSE3_EXMAP { *H1 = - AdjointMap(p); } #else { Matrix Rt = R_.transpose(); Matrix DR_R1 = -R_.matrix(), DR_t1 = Z3; Matrix Dt_R1 = -skewSymmetric(R_.unrotate(t_).vector()), Dt_t1 = -Rt; Matrix DR = collect(2, &DR_R1, &DR_t1); Matrix Dt = collect(2, &Dt_R1, &Dt_t1); *H1 = gtsam::stack(2, &DR, &Dt); } #endif Rot3 Rt = R_.inverse(); return Pose3(Rt, Rt*(-t_)); } /* ************************************************************************* */ // between = compose(p2,inverse(p1)); Pose3 Pose3::between(const Pose3& p2, boost::optional H1, boost::optional H2) const { Matrix invH; Pose3 invp1 = inverse(invH); Matrix composeH1; Pose3 result = invp1.compose(p2, composeH1, H2); if (H1) *H1 = composeH1 * invH; return result; } /* ************************************************************************* */ double Pose3::range(const Point3& point, boost::optional H1, boost::optional H2) const { if (!H1 && !H2) return transform_to(point).norm(); Point3 d = transform_to(point, H1, H2); double x = d.x(), y = d.y(), z = d.z(), d2 = x * x + y * y + z * z, n = sqrt(d2); Matrix D_result_d = Matrix_(1, 3, x / n, y / n, z / n); if (H1) *H1 = D_result_d * (*H1); if (H2) *H2 = D_result_d * (*H2); return n; } /* ************************************************************************* */ double Pose3::range(const Pose3& point, boost::optional H1, boost::optional H2) const { double r = range(point.translation(), H1, H2); if (H2) { #ifdef CORRECT_POSE3_EXMAP Matrix H2_ = *H2 * point.rotation().matrix(); #else Matrix H2_ = *H2; #endif *H2 = zeros(1, 6); insertSub(*H2, H2_, 0, 3); } return r; } } // namespace gtsam