""" GTSAM Copyright 2010, Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 All Rights Reserved Authors: Frank Dellaert, et al. (see THANKS for the full author list) See LICENSE for the license information A visualSLAM example for the structure-from-motion problem on a simulated dataset This version uses iSAM to solve the problem incrementally """ from __future__ import print_function import numpy as np import gtsam from gtsam.examples import SFMdata from gtsam import (Cal3_S2, GenericProjectionFactorCal3_S2, NonlinearFactorGraph, NonlinearISAM, Pose3, PriorFactorPoint3, PriorFactorPose3, Rot3, PinholeCameraCal3_S2, Values, Point3) def symbol(name: str, index: int) -> int: """ helper for creating a symbol without explicitly casting 'name' from str to int """ return gtsam.symbol(name, index) def main(): """ A structure-from-motion example with landmarks - The landmarks form a 10 meter cube - The robot rotates around the landmarks, always facing towards the cube """ # Define the camera calibration parameters K = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0) # Define the camera observation noise model camera_noise = gtsam.noiseModel.Isotropic.Sigma( 2, 1.0) # one pixel in u and v # Create the set of ground-truth landmarks points = SFMdata.createPoints() # Create the set of ground-truth poses poses = SFMdata.createPoses(K) # Create a NonlinearISAM object which will relinearize and reorder the variables # every "reorderInterval" updates isam = NonlinearISAM(reorderInterval=3) # Create a Factor Graph and Values to hold the new data graph = NonlinearFactorGraph() initial_estimate = Values() # Loop over the different poses, adding the observations to iSAM incrementally for i, pose in enumerate(poses): camera = PinholeCameraCal3_S2(pose, K) # Add factors for each landmark observation for j, point in enumerate(points): measurement = camera.project(point) factor = GenericProjectionFactorCal3_S2( measurement, camera_noise, symbol('x', i), symbol('l', j), K) graph.push_back(factor) # Intentionally initialize the variables off from the ground truth noise = Pose3(r=Rot3.Rodrigues(-0.1, 0.2, 0.25), t=Point3(0.05, -0.10, 0.20)) initial_xi = pose.compose(noise) # Add an initial guess for the current pose initial_estimate.insert(symbol('x', i), initial_xi) # If this is the first iteration, add a prior on the first pose to set the coordinate frame # and a prior on the first landmark to set the scale # Also, as iSAM solves incrementally, we must wait until each is observed at least twice before # adding it to iSAM. if i == 0: # Add a prior on pose x0, with 0.3 rad std on roll,pitch,yaw and 0.1m x,y,z pose_noise = gtsam.noiseModel.Diagonal.Sigmas( np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise) graph.push_back(factor) # Add a prior on landmark l0 point_noise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1) factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise) graph.push_back(factor) # Add initial guesses to all observed landmarks noise = np.array([-0.25, 0.20, 0.15]) for j, point in enumerate(points): # Intentionally initialize the variables off from the ground truth initial_lj = points[j] + noise initial_estimate.insert(symbol('l', j), initial_lj) else: # Update iSAM with the new factors isam.update(graph, initial_estimate) current_estimate = isam.estimate() print('*' * 50) print('Frame {}:'.format(i)) current_estimate.print_('Current estimate: ') # Clear the factor graph and values for the next iteration graph.resize(0) initial_estimate.clear() if __name__ == '__main__': main()