/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testQPSimple.cpp * @brief Unit tests for testQPSimple * @author Duy-Nguyen Ta * @author Krunal Chande * @author Luca Carlone * @date Dec 15, 2014 */ #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam::symbol_shorthand; using namespace gtsam; const double tol = 1e-10; //****************************************************************************** // x + y - 1 = 0 class ConstraintProblem1 : public NonlinearConstraint2 { typedef NonlinearConstraint2 Base; public: ConstraintProblem1(Key xK, Key yK, Key dualKey) : Base(xK, yK, dualKey, 1) {} // x + y - 1 Vector evaluateError(const double& x, const double& y, boost::optional H1 = boost::none, boost::optional H2 = boost::none) const { if (H1) *H1 = eye(1); if (H2) *H2 = eye(1); return (Vector(1) << x + y - 1.0).finished(); } }; TEST_DISABLED(testlcnlpSolver, QPProblem) { const Key dualKey = 0; // Simple quadratic cost: x1^2 + x2^2 // Note the Hessian encodes: // 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f // Hence here we have G11 = 2, G12 = 0, G22 = 2, g1 = 0, g2 = 0, f = 0 HessianFactor hf(X(1), Y(1), 2.0 * ones(1,1), zero(1), zero(1), 2*ones(1,1), zero(1) , 0); LinearEqualityFactorGraph equalities; LinearEquality linearConstraint(X(1), ones(1), Y(1), ones(1), 1*ones(1), dualKey); // x + y - 1 = 0 equalities.push_back(linearConstraint); // Compare against QP QP qp; qp.cost.add(hf); qp.equalities = equalities; // instantiate QPsolver QPSolver qpSolver(qp); // create initial values for optimization VectorValues initialVectorValues; initialVectorValues.insert(X(1), zero(1)); initialVectorValues.insert(Y(1), ones(1)); VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first; //Instantiate LCNLP LCNLP lcnlp; Values linPoint; linPoint.insert(X(1), zero(1)); linPoint.insert(Y(1), zero(1)); lcnlp.cost.add(LinearContainerFactor(hf, linPoint)); // wrap it using linearcontainerfactor lcnlp.linearEqualities.add(ConstraintProblem1(X(1), Y(1), dualKey)); Values initialValues; initialValues.insert(X(1), 0.0); initialValues.insert(Y(1), 0.0); // Instantiate LCNLPSolver LCNLPSolver lcnlpSolver(lcnlp); Values actualValues = lcnlpSolver.optimize(initialValues).first; DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualValues.at(X(1)), 1e-100); DOUBLES_EQUAL(expectedSolution.at(Y(1))[0], actualValues.at(Y(1)), 1e-100); } //****************************************************************************** class LineConstraintX : public NonlinearConstraint1 { typedef NonlinearConstraint1 Base; public: LineConstraintX(Key key, Key dualKey) : Base(key, dualKey, 1) { } double computeError(const Pose3& pose) const { return pose.x(); } Vector evaluateError(const Pose3& pose, boost::optional H = boost::none) const { if (H) *H = (Matrix(1,6) << zeros(1,3), pose.rotation().matrix().row(0)).finished(); return (Vector(1) << pose.x()).finished(); } }; TEST_DISABLED(testlcnlpSolver, poseOnALine) { const Key dualKey = 0; //Instantiate LCNLP LCNLP lcnlp; lcnlp.cost.add(PriorFactor(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 0, 0)), noiseModel::Unit::Create(6))); LineConstraintX constraint(X(1), dualKey); lcnlp.linearEqualities.add(constraint); Values initialValues; initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(1,0,0))); Values expectedSolution; expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3())); // Instantiate LCNLPSolver LCNLPSolver lcnlpSolver(lcnlp); Values actualSolution = lcnlpSolver.optimize(initialValues).first; CHECK(assert_equal(expectedSolution, actualSolution, 1e-10)); Pose3 pose(Rot3::ypr(0.1, 0.2, 0.3), Point3()); Matrix hessian = numericalHessian(boost::bind(&LineConstraintX::computeError, constraint, _1), pose, 1e-2); } //****************************************************************************** /// x + y - 1 <= 0 class InequalityProblem1 : public NonlinearInequality2 { typedef NonlinearInequality2 Base; public: InequalityProblem1(Key xK, Key yK, Key dualKey) : Base(xK, yK, dualKey) {} double computeError(const double& x, const double& y, boost::optional H1 = boost::none, boost::optional H2 = boost::none) const { if (H1) *H1 = eye(1); if (H2) *H2 = eye(1); return x + y - 1.0; } }; TEST_DISABLED(testlcnlpSolver, inequalityConstraint) { const Key dualKey = 0; // Simple quadratic cost: x^2 + y^2 // Note the Hessian encodes: // 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f // Hence here we have G11 = 2, G12 = 0, G22 = 2, g1 = 0, g2 = 0, f = 0 HessianFactor hf(X(1), Y(1), 2.0 * ones(1,1), zero(1), zero(1), 2*ones(1,1), zero(1) , 0); LinearInequalityFactorGraph inequalities; LinearInequality linearConstraint(X(1), ones(1), Y(1), ones(1), 1.0, dualKey); // x + y - 1 <= 0 inequalities.push_back(linearConstraint); // Compare against QP QP qp; qp.cost.add(hf); qp.inequalities = inequalities; // instantiate QPsolver QPSolver qpSolver(qp); // create initial values for optimization VectorValues initialVectorValues; initialVectorValues.insert(X(1), zero(1)); initialVectorValues.insert(Y(1), zero(1)); VectorValues expectedSolution = qpSolver.optimize(initialVectorValues).first; //Instantiate LCNLP LCNLP lcnlp; Values linPoint; linPoint.insert(X(1), zero(1)); linPoint.insert(Y(1), zero(1)); lcnlp.cost.add(LinearContainerFactor(hf, linPoint)); // wrap it using linearcontainerfactor lcnlp.linearInequalities.add(InequalityProblem1(X(1), Y(1), dualKey)); Values initialValues; initialValues.insert(X(1), 1.0); initialValues.insert(Y(1), -10.0); // Instantiate LCNLPSolver LCNLPSolver lcnlpSolver(lcnlp); Values actualValues = lcnlpSolver.optimize(initialValues).first; DOUBLES_EQUAL(expectedSolution.at(X(1))[0], actualValues.at(X(1)), 1e-10); DOUBLES_EQUAL(expectedSolution.at(Y(1))[0], actualValues.at(Y(1)), 1e-10); } //****************************************************************************** const size_t X_AXIS = 0; const size_t Y_AXIS = 1; const size_t Z_AXIS = 2; /** * Inequality boundary constraint on one axis (x, y or z) * axis <= bound */ class AxisUpperBound : public NonlinearInequality1 { typedef NonlinearInequality1 Base; size_t axis_; double bound_; public: AxisUpperBound(Key key, size_t axis, double bound, Key dualKey) : Base(key, dualKey), axis_(axis), bound_(bound) { } double computeError(const Pose3& pose, boost::optional H = boost::none) const { if (H) *H = (Matrix(1,6) << zeros(1,3), pose.rotation().matrix().row(axis_)).finished(); return pose.translation().vector()[axis_] - bound_; } }; /** * Inequality boundary constraint on one axis (x, y or z) * bound <= axis */ class AxisLowerBound : public NonlinearInequality1 { typedef NonlinearInequality1 Base; size_t axis_; double bound_; public: AxisLowerBound(Key key, size_t axis, double bound, Key dualKey) : Base(key, dualKey), axis_(axis), bound_(bound) { } double computeError(const Pose3& pose, boost::optional H = boost::none) const { if (H) *H = (Matrix(1,6) << zeros(1,3), -pose.rotation().matrix().row(axis_)).finished(); return -pose.translation().vector()[axis_] + bound_; } }; TEST_DISABLED(testlcnlpSolver, poseWithABoundary) { const Key dualKey = 0; //Instantiate LCNLP LCNLP lcnlp; lcnlp.cost.add(PriorFactor(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 0, 0)), noiseModel::Unit::Create(6))); AxisUpperBound constraint(X(1), X_AXIS, 0, dualKey); lcnlp.linearInequalities.add(constraint); Values initialValues; initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(1, 0, 0))); Values expectedSolution; expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(0, 0, 0))); // Instantiate LCNLPSolver LCNLPSolver lcnlpSolver(lcnlp); Values actualSolution = lcnlpSolver.optimize(initialValues).first; CHECK(assert_equal(expectedSolution, actualSolution, 1e-10)); } TEST_DISABLED(testlcnlpSolver, poseWithinA2DBox) { const Key dualKey = 0; //Instantiate LCNLP LCNLP lcnlp; lcnlp.cost.add(PriorFactor(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(10, 0.5, 0)), noiseModel::Unit::Create(6))); lcnlp.linearInequalities.add(AxisLowerBound(X(1), X_AXIS, -1, dualKey)); // -1 <= x lcnlp.linearInequalities.add(AxisUpperBound(X(1), X_AXIS, 1, dualKey+1)); // x <= 1 lcnlp.linearInequalities.add(AxisLowerBound(X(1), Y_AXIS, -1, dualKey+2)); // -1 <= y lcnlp.linearInequalities.add(AxisUpperBound(X(1), Y_AXIS, 1, dualKey+3));// y <= 1 Values initialValues; initialValues.insert(X(1), Pose3(Rot3::ypr(1, -1, 2), Point3(3, -5, 0))); Values expectedSolution; expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 0.5, 0))); // Instantiate LCNLPSolver LCNLPSolver lcnlpSolver(lcnlp); Values actualSolution = lcnlpSolver.optimize(initialValues).first; CHECK(assert_equal(expectedSolution, actualSolution, 1e-10)); } TEST(testlcnlpSolver, posesInA2DBox) { const double xLowerBound = -3.0, xUpperBound = 5.0, yLowerBound = -1.0, yUpperBound = 2.0, zLowerBound = 0.0, zUpperBound = 2.0; //Instantiate LCNLP LCNLP lcnlp; // prior on the first pose SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << 0.001, 0.001, 0.001, 0.0001, 0.0001, 0.0001).finished()); lcnlp.cost.add(PriorFactor(X(1), Pose3(), priorNoise)); // odometry between factor for subsequent poses SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << 0.001, 0.001, 0.001, 0.1, 0.1, 0.1).finished()); Pose3 odo12(Rot3::ypr(M_PI/2.0, 0, 0), Point3(10, 0, 0)); lcnlp.cost.add(BetweenFactor(X(1), X(2), odo12, odoNoise)); Pose3 odo23(Rot3::ypr(M_PI/2.0, 0, 0), Point3(2, 0, 2)); lcnlp.cost.add(BetweenFactor(X(2), X(3), odo23, odoNoise)); // Box constraints Key dualKey = 0; for (size_t i=1; i<=3; ++i) { lcnlp.linearInequalities.add(AxisLowerBound(X(i), X_AXIS, xLowerBound, dualKey++)); lcnlp.linearInequalities.add(AxisUpperBound(X(i), X_AXIS, xUpperBound, dualKey++)); lcnlp.linearInequalities.add(AxisLowerBound(X(i), Y_AXIS, yLowerBound, dualKey++)); lcnlp.linearInequalities.add(AxisUpperBound(X(i), Y_AXIS, yUpperBound, dualKey++)); lcnlp.linearInequalities.add(AxisLowerBound(X(i), Z_AXIS, zLowerBound, dualKey++)); lcnlp.linearInequalities.add(AxisUpperBound(X(i), Z_AXIS, zUpperBound, dualKey++)); } Values initialValues; initialValues.insert(X(1), Pose3(Rot3(), Point3(0, 0, 0))); initialValues.insert(X(2), Pose3(Rot3(), Point3(0, 0, 0))); initialValues.insert(X(3), Pose3(Rot3(), Point3(0, 0, 0))); Values expectedSolution; expectedSolution.insert(X(1), Pose3()); expectedSolution.insert(X(2), Pose3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(5, 0, 0))); expectedSolution.insert(X(3), Pose3(Rot3::ypr(M_PI, 0, 0), Point3(5, 2, 2))); // Instantiate LCNLPSolver LCNLPSolver lcnlpSolver(lcnlp); bool useWarmStart = true; Values actualSolution = lcnlpSolver.optimize(initialValues, useWarmStart).first; // cout << "Rotation angles: " << endl; // for (size_t i = 1; i<=3; i++) { // cout << actualSolution.at(X(i)).rotation().ypr().transpose()*180/M_PI << endl; // } // cout << "Actual Error: " << lcnlp.cost.error(actualSolution) << endl; // cout << "Expected Error: " << lcnlp.cost.error(expectedSolution) << endl; // actualSolution.print("actualSolution: "); AxisLowerBound factor(X(1), X_AXIS, xLowerBound, dualKey++); Matrix hessian = numericalHessian(boost::bind(&AxisLowerBound::computeError, factor, _1, boost::none), Pose3(), 1e-3); cout << "Hessian: \n" << hessian << endl; CHECK(assert_equal(expectedSolution, actualSolution, 1e-5)); } //****************************************************************************** int main() { cout<<"here: "<