/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file LocalizationExample.cpp * @brief Simple robot localization example, with three "GPS-like" measurements * @author Frank Dellaert */ /** * A simple 2D pose slam example with "GPS" measurements * - The robot moves forward 2 meter each iteration * - The robot initially faces along the X axis (horizontal, to the right in 2D) * - We have full odometry between pose * - We have "GPS-like" measurements implemented with a custom factor */ // We will use Pose2 variables (x, y, theta) to represent the robot positions #include // We will use simple integer Keys to refer to the robot poses. #include // As in OdometryExample.cpp, we use a BetweenFactor to model odometry measurements. #include // We add all facors to a Nonlinear Factor Graph, as our factors are nonlinear. #include // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the // nonlinear functions around an initial linearization point, then solve the linear system // to update the linearization point. This happens repeatedly until the solver converges // to a consistent set of variable values. This requires us to specify an initial guess // for each variable, held in a Values container. #include // Finally, once all of the factors have been added to our factor graph, we will want to // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values. // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the // standard Levenberg-Marquardt solver #include // Once the optimized values have been calculated, we can also calculate the marginal covariance // of desired variables #include using namespace std; using namespace gtsam; // Before we begin the example, we must create a custom unary factor to implement a // "GPS-like" functionality. Because standard GPS measurements provide information // only on the position, and not on the orientation, we cannot use a simple prior to // properly model this measurement. // // The factor will be a unary factor, affect only a single system variable. It will // also use a standard Gaussian noise model. Hence, we will derive our new factor from // the NoiseModelFactorN. #include class UnaryFactor: public NoiseModelFactorN { // The factor will hold a measurement consisting of an (X,Y) location // We could this with a Point2 but here we just use two doubles double mx_, my_; public: using NoiseModelFactor1::evaluateError; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; // The constructor requires the variable key, the (X, Y) measurement value, and the noise model UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model): NoiseModelFactorN(model, j), mx_(x), my_(y) {} ~UnaryFactor() override {} // Using the NoiseModelFactorN base class there are two functions that must be overridden. // The first is the 'evaluateError' function. This function implements the desired measurement // function, returning a vector of errors when evaluated at the provided variable value. It // must also calculate the Jacobians for this measurement function, if requested. Vector evaluateError(const Pose2& q, OptionalMatrixType H) const override { // The measurement function for a GPS-like measurement h(q) which predicts the measurement (m) is h(q) = q, q = [qx qy qtheta] // The error is then simply calculated as E(q) = h(q) - m: // error_x = q.x - mx // error_y = q.y - my // Node's orientation reflects in the Jacobian, in tangent space this is equal to the right-hand rule rotation matrix // H = [ cos(q.theta) -sin(q.theta) 0 ] // [ sin(q.theta) cos(q.theta) 0 ] const Rot2& R = q.rotation(); if (H) (*H) = (gtsam::Matrix(2, 3) << R.c(), -R.s(), 0.0, R.s(), R.c(), 0.0).finished(); return (Vector(2) << q.x() - mx_, q.y() - my_).finished(); } // The second is a 'clone' function that allows the factor to be copied. Under most // circumstances, the following code that employs the default copy constructor should // work fine. gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new UnaryFactor(*this))); } // Additionally, we encourage you the use of unit testing your custom factors, // (as all GTSAM factors are), in which you would need an equals and print, to satisfy the // GTSAM_CONCEPT_TESTABLE_INST(T) defined in Testable.h, but these are not needed below. }; // UnaryFactor int main(int argc, char** argv) { // 1. Create a factor graph container and add factors to it NonlinearFactorGraph graph; // 2a. Add odometry factors // For simplicity, we will use the same noise model for each odometry factor auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); // Create odometry (Between) factors between consecutive poses graph.emplace_shared >(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise); graph.emplace_shared >(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise); // 2b. Add "GPS-like" measurements // We will use our custom UnaryFactor for this. auto unaryNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y graph.emplace_shared(1, 0.0, 0.0, unaryNoise); graph.emplace_shared(2, 2.0, 0.0, unaryNoise); graph.emplace_shared(3, 4.0, 0.0, unaryNoise); graph.print("\nFactor Graph:\n"); // print // 3. Create the data structure to hold the initialEstimate estimate to the solution // For illustrative purposes, these have been deliberately set to incorrect values Values initialEstimate; initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2)); initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1)); initialEstimate.print("\nInitial Estimate:\n"); // print // 4. Optimize using Levenberg-Marquardt optimization. The optimizer // accepts an optional set of configuration parameters, controlling // things like convergence criteria, the type of linear system solver // to use, and the amount of information displayed during optimization. // Here we will use the default set of parameters. See the // documentation for the full set of parameters. LevenbergMarquardtOptimizer optimizer(graph, initialEstimate); Values result = optimizer.optimize(); result.print("Final Result:\n"); // 5. Calculate and print marginal covariances for all variables Marginals marginals(graph, result); cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl; cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl; cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl; return 0; }