/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testSubgraphSolver.cpp * @brief Unit tests for SubgraphSolver * @author Yong-Dian Jian **/ #include #include #include #include #include #include #include #include #include #include #include using namespace boost::assign; using namespace std; using namespace gtsam; static size_t N = 3; static SubgraphSolverParameters kParameters; static auto kOrdering = example::planarOrdering(N); /* ************************************************************************* */ /** unnormalized error */ static double error(const GaussianFactorGraph& fg, const VectorValues& x) { double total_error = 0.; for(const GaussianFactor::shared_ptr& factor: fg) total_error += factor->error(x); return total_error; } /* ************************************************************************* */ TEST( SubgraphSolver, Parameters ) { LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity()); LONGS_EQUAL(500, kParameters.maxIterations()); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor1 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b // The first constructor just takes a factor graph (and kParameters) // and it will split the graph into A1 and A2, where A1 is a spanning tree SubgraphSolver solver(Ab, kParameters, kOrdering); VectorValues optimized = solver.optimize(); // does PCG optimization DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor2 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b // Get the spanning tree GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2 boost::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab); // The second constructor takes two factor graphs, so the caller can specify // the preconditioner (Ab1) and the constraints that are left out (Ab2) SubgraphSolver solver(*Ab1, Ab2, kParameters, kOrdering); VectorValues optimized = solver.optimize(); DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor3 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b // Get the spanning tree and corresponding kOrdering GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2 boost::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab); // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT auto Rc1 = Ab1->eliminateSequential(); // The third constructor allows the caller to pass an already solved preconditioner Rc1_ // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before SubgraphSolver solver(Rc1, Ab2, kParameters); VectorValues optimized = solver.optimize(); DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */