/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactor.h * @brief Basic bearing factor from 2D measurement * @author Chris Beall * @author Luca Carlone * @author Zsolt Kira */ #pragma once #include #include #include #include #include #include #include namespace gtsam { /** * The calibration is known here. * @addtogroup SLAM */ template class SmartProjectionFactor: public NonlinearFactor { protected: // Keep a copy of measurement and calibration for I/O std::vector measured_; ///< 2D measurement for each of the m views ///< (important that the order is the same as the keys that we use to create the factor) boost::shared_ptr K_; ///< shared pointer to calibration object const SharedNoiseModel noise_; ///< noise model used boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NonlinearFactor Base; /// shorthand for this class typedef SmartProjectionFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// Default constructor SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} /** * Constructor * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(const std::vector measured, const SharedNoiseModel& model, std::vector poseKeys, const boost::shared_ptr& K, boost::optional body_P_sensor = boost::none) : measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor), throwCheirality_(false), verboseCheirality_(false) { keys_.assign(poseKeys.begin(), poseKeys.end()); } /** * Constructor with exception-handling flags * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param K shared pointer to the constant calibration * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(const std::vector measured, const SharedNoiseModel& model, std::vector poseKeys, const boost::shared_ptr& K, bool throwCheirality, bool verboseCheirality, boost::optional body_P_sensor = boost::none) : measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} /** Virtual destructor */ virtual ~SmartProjectionFactor() {} /// @return a deep copy of this factor // virtual gtsam::NonlinearFactor::shared_ptr clone() const { // return boost::static_pointer_cast( // gtsam::NonlinearFactor::shared_ptr(new This(*this))); } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "SmartProjectionFactor, z = "; BOOST_FOREACH(const Point2& p, measured_) { std::cout << "measurement, p = "<< p << std::endl; } if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); bool areMeasurementsEqual = true; for(size_t i = 0; i < measured_.size(); i++) { if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false) areMeasurementsEqual = false; break; } return e && Base::equals(p, tol) && areMeasurementsEqual && this->K_->equals(*e->K_, tol) && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// get the dimension of the factor (number of rows on linearization) virtual size_t dim() const { return 6*keys_.size(); } /// linearize returns a Hessianfactor that is an approximation of error(p) virtual boost::shared_ptr linearize(const Values& values, const Ordering& ordering) const { bool debug = false; bool blockwise = true; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { if(body_P_sensor_) cameraPoses.push_back(values.at(k).compose(*body_P_sensor_)); else cameraPoses.push_back(values.at(k)); } // We triangulate the 3D position of the landmark boost::optional point = triangulatePoint3(cameraPoses, measured_, *K_); if (debug) { std::cout << "point " << *point << std::endl; } std::vector js; std::vector Gs(keys_.size()*(keys_.size()+1)/2); std::vector gs(keys_.size()); double f=0; // fill in the keys BOOST_FOREACH(const Key& k, keys_) { js += ordering[k]; } // point is behind one of the cameras, turn factor off by setting everything to 0 if (!point) { BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6,6); BOOST_FOREACH(Vector& v, gs) v = zero(6); return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f)); } // For debug only std::vector Gs1; std::vector gs1; if (blockwise || debug){ // ========================================================================================================== std::vector Hx(keys_.size()); std::vector Hl(keys_.size()); std::vector b(keys_.size()); for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); std::cout << "pose " << pose << std::endl; PinholeCamera camera(pose, *K_); b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector(); noise_-> WhitenSystem(Hx.at(i), Hl.at(i), b.at(i)); f += b.at(i).squaredNorm(); } // Shur complement trick // Allocate m^2 matrix blocks std::vector< std::vector > Hxl(keys_.size(), std::vector( keys_.size())); // Allocate inv(Hl'Hl) Matrix3 C = zeros(3,3); for(size_t i1 = 0; i1 < keys_.size(); i1++) { C += Hl.at(i1).transpose() * Hl.at(i1); } C = C.inverse().eval(); // this is very important: without eval, because of eigen aliasing the results will be incorrect // Calculate sub blocks for(size_t i1 = 0; i1 < keys_.size(); i1++) { for(size_t i2 = 0; i2 < keys_.size(); i2++) { // we only need the upper triangular entries Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose(); if (i1==0 && i2==0){ if (debug) { std::cout << "Hoff"<< i1 << i2 << "=[" << Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose() << "];" << std::endl; std::cout << "Hxoff"<< "=[" << Hx.at(i1) << "];" << std::endl; std::cout << "Hloff"<< "=[" << Hl.at(i1) << "];" << std::endl; std::cout << "Hloff2"<< "=[" << Hl.at(i2) << "];" << std::endl; std::cout << "C"<< "=[" << C << "];" << std::endl; } } } } // Populate Gs and gs int GsCount = 0; for(size_t i1 = 0; i1 < keys_.size(); i1++) { gs.at(i1) = Hx.at(i1).transpose() * b.at(i1); for(size_t i2 = 0; i2 < keys_.size(); i2++) { gs.at(i1) -= Hxl[i1][i2] * b.at(i2); if (i2 == i1){ Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2); if (debug) { std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl; std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl; std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl; } GsCount++; } if (i2 > i1) { Gs.at(GsCount) = - Hxl[i1][i2] * Hx.at(i2); if (debug) { std::cout << "HxlH"<< GsCount << "=[" << Hxl[i1][i2] * Hx.at(i2) << "];" << std::endl; std::cout << "Hx2_"<< GsCount << "=[" << Hx.at(i2) << "];" << std::endl; std::cout << "H"<< GsCount << "=[" << Gs.at(GsCount) << "];" << std::endl; } GsCount++; } } } if (debug) { // Copy result for later comparison BOOST_FOREACH(const Matrix& m, Gs) { Gs1.push_back(m); } // Copy result for later comparison BOOST_FOREACH(const Matrix& m, gs) { gs1.push_back(m); } } } if (blockwise == false || debug){ // version with full matrix multiplication // ========================================================================================================== Matrix Hx2 = zeros(2*keys_.size(), 6*keys_.size()); Matrix Hl2 = zeros(2*keys_.size(), 3); Vector b2 = zero(2*keys_.size()); for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); Matrix Hxi, Hli; Vector bi = ( camera.project(*point,Hxi,Hli) - measured_.at(i) ).vector(); noise_-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 3 ) = Hli; if (debug) { std::cout << "Hxi= \n" << Hxi << std::endl; std::cout << "Hxi.transpose() * Hxi= \n" << Hxi.transpose() * Hxi << std::endl; std::cout << "Hxl.transpose() * Hxl= \n" << Hli.transpose() * Hli << std::endl; } subInsert(b2,bi,2*i); } // Shur complement trick Matrix H(6*keys_.size(), 6*keys_.size()); Matrix3 C2 = (Hl2.transpose() * Hl2).inverse(); H = Hx2.transpose() * Hx2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * Hx2; if (debug) { std::cout << "Hx2" << "=[" << Hx2 << "];" << std::endl; std::cout << "Hl2" << "=[" << Hl2 << "];" << std::endl; std::cout << "H" << "=[" << H << "];" << std::endl; std::cout << "Cnoinv2"<< "=[" << Hl2.transpose() * Hl2 << "];" << std::endl; std::cout << "C2"<< "=[" << C2 << "];" << std::endl; std::cout << "================================================================================" << std::endl; } Vector gs_vector = Hx2.transpose() * b2 - Hx2.transpose() * Hl2 * C2 * Hl2.transpose() * b2; // Populate Gs and gs int GsCount2 = 0; for(size_t i1 = 0; i1 < keys_.size(); i1++) { gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6); for(size_t i2 = 0; i2 < keys_.size(); i2++) { if (i2 >= i1) { Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6); GsCount2++; } } } } if (debug) { // Compare blockwise and full version bool gs1_equal_gs = true; for(size_t i = 0; i < measured_.size(); i++) { std::cout << "gs.at(i) " << gs.at(i).transpose() << std::endl; std::cout << "gs1.at(i) " << gs1.at(i).transpose() << std::endl; std::cout << "gs.error " << (gs.at(i)- gs1.at(i)).transpose() << std::endl; if( !equal(gs.at(i), gs1.at(i)), 1e-7) { gs1_equal_gs = false; } } std::cout << "gs1_equal_gs " << gs1_equal_gs << std::endl; for(size_t i = 0; i < keys_.size()*(keys_.size()+1)/2; i++) { std::cout << "Gs.at(i) " << Gs.at(i).transpose() << std::endl; std::cout << "Gs1.at(i) " << Gs1.at(i).transpose() << std::endl; std::cout << "Gs.error " << (Gs.at(i)- Gs1.at(i)).transpose() << std::endl; } std::cout << "Gs1_equal_Gs " << gs1_equal_gs << std::endl; } // ========================================================================================================== return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f)); } /** * Calculate the error of the factor. * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. */ virtual double error(const Values& values) const { if (this->active(values)) { double overallError=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { if(body_P_sensor_) cameraPoses.push_back(values.at(k).compose(*body_P_sensor_)); else cameraPoses.push_back(values.at(k)); } // We triangulate the 3D position of the landmark boost::optional point = triangulatePoint3(cameraPoses, measured_, *K_); if(point) { // triangulation produced a good estimate of landmark position for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); Point2 reprojectionError(camera.project(*point) - measured_.at(i)); overallError += noise_->distance( reprojectionError.vector() ); } return sqrt(overallError); }else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error return 0.0; } } else { return 0.0; } } /** return the measurements */ const Vector& measured() const { return measured_; } /** return the calibration object */ inline const boost::shared_ptr calibration() const { return K_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(K_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } }; } // \ namespace gtsam