/** * @file Rot3.cpp * @brief Rotation (internal: 3*3 matrix representation*) * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert */ #include "Rot3.h" using namespace std; namespace gtsam { /* ************************************************************************* */ /** faster than below ? */ /* ************************************************************************* */ Rot3 rodriguez(const Vector& w, double t) { double l_w = 0.0; for (int i = 0; i < 3; i++) l_w += pow(w(i), 2.0); if (l_w != 1.0) throw domain_error("rodriguez: length of w should be 1"); double ct = cos(t), st = sin(t); Point3 r1 = Point3(ct + w(0) * w(0) * (1 - ct), w(2) * st + w(0) * w(1) * (1 - ct), -w(1) * st + w(0) * w(2) * (1 - ct)); Point3 r2 = Point3(w(1) * w(0) * (1 - ct) - w(2) * st, w(1) * w(1) * (1 - ct) + ct, w(1) * w(2) * (1 - ct) + w(0) * st); Point3 r3 = Point3(w(1) * st + w(2) * w(0) * (1 - ct), -w(0) * st + w(2) * w(1) * (1 - ct), ct + w(2) * w(2) * (1 - ct)); return Rot3(r1, r2, r3); } /* ************************************************************************* */ Rot3 rodriguez(double wx, double wy, double wz) { Matrix J = skewSymmetric(wx, wy, wz); double t2 = wx * wx + wy * wy + wz * wz; if (t2 < 1e-10) return Rot3(); double t = sqrt(t2); Matrix R = eye(3, 3) + sin(t) / t * J + (1.0 - cos(t)) / t2 * (J * J); return R; // matrix constructor will be tripped } /* ************************************************************************* */ Rot3 rodriguez(const Vector& v) { return rodriguez(v(0), v(1), v(2)); } /* ************************************************************************* */ Rot3 exmap(const Rot3& R, const Vector& v) { return rodriguez(v) * R; } /* ************************************************************************* */ Rot3 Rot3::exmap(const Vector& v) const { if (zero(v)) return (*this); return rodriguez(v) * (*this); } /* ************************************************************************* */ Point3 rotate(const Rot3& R, const Point3& p) { return R * p; } /* ************************************************************************* */ Matrix Drotate1(const Rot3& R, const Point3& p) { Point3 q = R * p; return skewSymmetric(-q.x(), -q.y(), -q.z()); } /* ************************************************************************* */ Matrix Drotate2(const Rot3& R) { return R.matrix(); } /* ************************************************************************* */ Point3 unrotate(const Rot3& R, const Point3& p) { return R.unrotate(p); } /* ************************************************************************* */ bool Rot3::equals(const Rot3 & R, double tol) const { return equal_with_abs_tol(matrix(), R.matrix(), tol); } /* ************************************************************************* */ /** see libraries/caml/geometry/math.lyx, derivative of unrotate */ /* ************************************************************************* */ Matrix Dunrotate1(const Rot3 & R, const Point3 & p) { Point3 q = R.unrotate(p); return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose(); } /* ************************************************************************* */ Matrix Dunrotate2(const Rot3 & R) { return R.transpose(); } /* ************************************************************************* */ bool assert_equal(const Rot3 & A, const Rot3 & B, double tol) { if(A.equals(B,tol)) return true; printf("not equal:\n"); A.print("A"); B.print("B"); return false; } /* ************************************************************************* */ /** This function receives a rotation 3 by 3 matrix and returns 3 rotation angles. * The implementation is based on the algorithm in multiple view geometry * the function returns a vector that its arguments are: thetax, thetay, thetaz in radians. */ /* ************************************************************************* */ Vector RQ(Matrix R) { double Cx = R(2, 2) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow( (double) (R(2, 1)), 2.0)))); //cosX double Sx = -R(2, 1) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow( (double) (R(2, 1)), 2.0)))); //sinX Matrix Qx(3, 3); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) Qx(i, j) = 0; Qx(0, 0) = 1; Qx(1, 1) = Cx; Qx(1, 2) = -Sx; Qx(2, 1) = Sx; Qx(2, 2) = Cx; R = R * Qx; double Cy = R(2, 2) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R( 2, 0)), 2.0))); //cosY double Sy = R(2, 0) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R( 2, 0)), 2.0))); //sinY Matrix Qy(3, 3); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) Qy(i, j) = 0; Qy(0, 0) = Cy; Qy(0, 2) = Sy; Qy(1, 1) = 1; Qy(2, 0) = -Sy; Qy(2, 2) = Cy; R = R * Qy; double Cz = R(1, 1) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow((double) (R( 1, 0)), 2.0))); //cosZ double Sz = -R(1, 0) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow( (double) (R(1, 0)), 2.0)));//sinZ Matrix Qz(3, 3); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) Qz(i, j) = 0; Qz(0, 0) = Cz; Qz(0, 1) = -Sz; Qz(1, 0) = Sz; Qz(1, 1) = Cz; Qz(2, 2) = 1; R = R * Qz; double pi = atan2(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0) * 4.0; Vector result(3); result(0) = -atan2(Sx, Cx); result(1) = -atan2(Sy, Cy); result(2) = -atan2(Sz, Cz); return result; } /* ************************************************************************* */ } // namespace gtsam