/* * @file testSQP.cpp * @brief demos of SQP using existing gtsam components * @author Alex Cunningham */ #include #include #include // for operator += #include // for insert #include #include #include #define GTSAM_MAGIC_KEY #include #include #include #include #include #include #include // templated implementations #include #include #include #include using namespace std; using namespace gtsam; using namespace boost; using namespace boost::assign; // Models to use SharedDiagonal probModel1 = sharedSigma(1,1.0); SharedDiagonal probModel2 = sharedSigma(2,1.0); SharedDiagonal constraintModel1 = noiseModel::Constrained::All(1); // trick from some reading group #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) /* ********************************************************************* * This example uses a nonlinear objective function and * nonlinear equality constraint. The formulation is actually * the Cholesky form that creates the full Hessian explicitly, * which should really be avoided with our QR-based machinery. * * Note: the update equation used here has a fixed step size * and gain that is rather arbitrarily chosen, and as such, * will take a silly number of iterations. */ TEST (SQP, problem1_cholesky ) { bool verbose = false; // use a nonlinear function of f(x) = x^2+y^2 // nonlinear equality constraint: g(x) = x^2-5-y=0 // Lagrangian: f(x) + \lambda*g(x) // Symbols Symbol x1("x1"), y1("y1"), L1("L1"); // state structure: [x y \lambda] VectorConfig init, state; init.insert(x1, Vector_(1, 1.0)); init.insert(y1, Vector_(1, 1.0)); init.insert(L1, Vector_(1, 1.0)); state = init; if (verbose) init.print("Initial State"); // loop until convergence int maxIt = 10; for (int i = 0; i ||Ax-b||^2 * where: * h(x) simply returns the inputs * z zeros(2) * A identity * b linearization point */ Matrix A = eye(2); Vector b = Vector_(2, x, y); GaussianFactor::shared_ptr f1( new GaussianFactor(x1, sub(A, 0,2, 0,1), // A(:,1) y1, sub(A, 0,2, 1,2), // A(:,2) b, // rhs of f(x) probModel2)); // arbitrary sigma /** create the constraint-linear factor * Provides a mechanism to use variable gain to force the constraint * \lambda*gradG*dx + d\lambda = zero * formulated in matrix form as: * [\lambda*gradG eye(1)] [dx; d\lambda] = zero */ Matrix gradG = Matrix_(1, 2,2*x, -1.0); GaussianFactor::shared_ptr f2( new GaussianFactor(x1, lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1) y1, lambda*sub(gradG, 0,1, 1,2), // scaled gradG(:,2) L1, eye(1), // dlambda term Vector_(1, 0.0), // rhs is zero probModel1)); // arbitrary sigma // create the actual constraint // [gradG] [x; y] - g = 0 Vector g = Vector_(1,x*x-y-5); GaussianFactor::shared_ptr c1( new GaussianFactor(x1, sub(gradG, 0,1, 0,1), // slice first part of gradG y1, sub(gradG, 0,1, 1,2), // slice second part of gradG g, // value of constraint function constraintModel1)); // force to constraint // construct graph GaussianFactorGraph fg; fg.push_back(f1); fg.push_back(f2); fg.push_back(c1); if (verbose) fg.print("Graph"); // solve Ordering ord; ord += x1, y1, L1; VectorConfig delta = fg.optimize(ord); if (verbose) delta.print("Delta"); // update initial estimate VectorConfig newState = expmap(state, delta.scale(-1.0)); // set the state to the updated state state = newState; if (verbose) state.print("Updated State"); } // verify that it converges to the nearest optimal point VectorConfig expected; expected.insert(x1, Vector_(1, 2.12)); expected.insert(y1, Vector_(1, -0.5)); CHECK(assert_equal(state[x1], expected[x1], 1e-2)); CHECK(assert_equal(state[y1], expected[y1], 1e-2)); } /* ********************************************************************* */ // Basic configs typedef LieConfig LagrangeConfig; // full components typedef TupleConfig3, LieConfig, LieConfig > Config2D; //typedef TupleConfig > Config2D; typedef NonlinearFactorGraph Graph2D; typedef NonlinearEquality NLE; typedef boost::shared_ptr > shared; typedef NonlinearOptimizer Optimizer; /* * Determining a ground truth linear system * with two poses seeing one landmark, with each pose * constrained to a particular value */ TEST (SQP, two_pose_truth ) { bool verbose = false; // create a graph shared_ptr graph(new Graph2D); // add the constraints on the ends // position (1, 1) constraint for x1 // position (5, 6) constraint for x2 simulated2D::PoseKey x1(1), x2(2); simulated2D::PointKey l1(1); Point2 pt_x1(1.0, 1.0), pt_x2(5.0, 6.0); shared_ptr ef1(new NLE(x1, pt_x1)), ef2(new NLE(x2, pt_x2)); graph->push_back(ef1); graph->push_back(ef2); // measurement from x1 to l1 Point2 z1(0.0, 5.0); SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1)); shared f1(new simulated2D::GenericMeasurement(z1, sigma, x1,l1)); graph->push_back(f1); // measurement from x2 to l1 Point2 z2(-4.0, 0.0); shared f2(new simulated2D::GenericMeasurement(z2, sigma, x2,l1)); graph->push_back(f2); // create an initial estimate Point2 pt_l1( 1.0, 6.0 // ground truth //1.2, 5.6 // small error ); shared_ptr initialEstimate(new Config2D); initialEstimate->insert(l1, pt_l1); initialEstimate->insert(x1, pt_x1); initialEstimate->insert(x2, pt_x2); // optimize the graph shared_ptr ordering(new Ordering()); *ordering += "x1", "x2", "l1"; Optimizer::shared_solver solver(new Optimizer::solver(ordering)); Optimizer optimizer(graph, initialEstimate, solver); // display solution double relativeThreshold = 1e-5; double absoluteThreshold = 1e-5; Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold); boost::shared_ptr actual = act_opt.config(); if (verbose) actual->print("Configuration after optimization"); // verify Config2D expected; expected.insert(x1, pt_x1); expected.insert(x2, pt_x2); expected.insert(l1, Point2(1.0, 6.0)); CHECK(assert_equal(expected, *actual, 1e-5)); } /* ********************************************************************* */ namespace sqp_test1 { // binary constraint between landmarks /** g(x) = x-y = 0 */ Vector g(const Config2D& config, const list& keys) { Point2 pt1, pt2; pt1 = config[simulated2D::PointKey(keys.front().index())]; pt2 = config[simulated2D::PointKey(keys.back().index())]; return Vector_(2, pt1.x() - pt2.x(), pt1.y() - pt2.y()); } /** jacobian at l1 */ Matrix G1(const Config2D& config, const list& keys) { return eye(2); } /** jacobian at l2 */ Matrix G2(const Config2D& config, const list& keys) { return -1 * eye(2); } } // \namespace sqp_test1 namespace sqp_test2 { // Unary Constraint on x1 /** g(x) = x -[1;1] = 0 */ Vector g(const Config2D& config, const list& keys) { Point2 x = config[keys.front()]; return Vector_(2, x.x() - 1.0, x.y() - 1.0); } /** jacobian at x1 */ Matrix G(const Config2D& config, const list& keys) { return eye(2); } } // \namespace sqp_test2 typedef NonlinearConstraint2< Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2; /* ********************************************************************* * Version that actually uses nonlinear equality constraints * to to perform optimization. Same as above, but no * equality constraint on x2, and two landmarks that * should be the same. Note that this is a linear system, * so it will converge in one step. */ TEST (SQP, two_pose ) { bool verbose = false; // create the graph shared_ptr graph(new Graph2D); // add the constraints on the ends // position (1, 1) constraint for x1 // position (5, 6) constraint for x2 simulated2D::PoseKey x1(1), x2(2); simulated2D::PointKey l1(1), l2(2); Point2 pt_x1(1.0, 1.0), pt_x2(5.0, 6.0); shared_ptr ef1(new NLE(x1, pt_x1)); graph->push_back(ef1); // measurement from x1 to l1 Point2 z1(0.0, 5.0); SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1)); shared f1(new simulated2D::GenericMeasurement(z1, sigma, x1,l1)); graph->push_back(f1); // measurement from x2 to l2 Point2 z2(-4.0, 0.0); shared f2(new simulated2D::GenericMeasurement(z2, sigma, x2,l2)); graph->push_back(f2); // equality constraint between l1 and l2 LagrangeKey L1(1); list keys2; keys2 += l1, l2; boost::shared_ptr c2(new NLC2( boost::bind(sqp_test1::g, _1, keys2), l1, boost::bind(sqp_test1::G1, _1, keys2), l2, boost::bind(sqp_test1::G2, _1, keys2), 2, L1)); graph->push_back(c2); if (verbose) graph->print("Initial nonlinear graph with constraints"); // create an initial estimate shared_ptr initialEstimate(new Config2D); initialEstimate->insert(x1, pt_x1); initialEstimate->insert(x2, Point2()); initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame initialEstimate->insert(L1, Vector_(2, 1.0, 1.0)); // connect the landmarks // create state config variables and initialize them Config2D state(*initialEstimate); // linearize the graph GaussianFactorGraph fg = graph->linearize(state); if (verbose) fg.print("Linearized graph"); // create an ordering Ordering ordering; ordering += "x1", "x2", "l1", "l2", "L1"; // optimize linear graph to get full delta config GaussianBayesNet cbn = fg.eliminate(ordering); if (verbose) cbn.print("ChordalBayesNet"); VectorConfig delta = optimize(cbn); //fg.optimize(ordering); if (verbose) delta.print("Delta Config"); // update both state variables state = expmap(state, delta); if (verbose) state.print("newState"); // verify Config2D expected; expected.insert(x1, pt_x1); expected.insert(l1, Point2(1.0, 6.0)); expected.insert(l2, Point2(1.0, 6.0)); expected.insert(x2, Point2(5.0, 6.0)); expected.insert(L1, Vector_(2, 6.0, 7.0)); CHECK(assert_equal(expected, state, 1e-5)); } /* ********************************************************************* */ // VSLAM Examples /* ********************************************************************* */ // make a realistic calibration matrix double fov = 60; // degrees size_t w=640,h=480; Cal3_S2 K(fov,w,h); boost::shared_ptr shK(new Cal3_S2(K)); using namespace gtsam::visualSLAM; using namespace boost; // typedefs for visual SLAM example typedef TypedSymbol Pose3Key; typedef TypedSymbol Point3Key; typedef TupleConfig3, LieConfig, LieConfig > VConfig; typedef NonlinearFactorGraph VGraph; typedef boost::shared_ptr > shared_vf; typedef NonlinearOptimizer VOptimizer; typedef NonlinearConstraint2< VConfig, visualSLAM::PointKey, Pose3, visualSLAM::PointKey, Pose3> VNLC2; typedef NonlinearEquality Pose3Constraint; /** * Ground truth for a visual SLAM example with stereo vision */ TEST (SQP, stereo_truth ) { bool verbose = false; // create initial estimates Rot3 faceDownY(Matrix_(3,3, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0)); Pose3 pose1(faceDownY, Point3()); // origin, left camera SimpleCamera camera1(K, pose1); Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left SimpleCamera camera2(K, pose2); Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away Point3 landmarkNoisy(1.0, 6.0, 0.0); // create truth config boost::shared_ptr truthConfig(new VConfig); truthConfig->insert(Pose3Key(1), camera1.pose()); truthConfig->insert(Pose3Key(2), camera2.pose()); truthConfig->insert(Point3Key(1), landmark); // create graph shared_ptr graph(new VGraph()); // create equality constraints for poses graph->push_back(shared_ptr(new Pose3Constraint(Pose3Key(1), camera1.pose()))); graph->push_back(shared_ptr(new Pose3Constraint(Pose3Key(2), camera2.pose()))); // create VSLAM factors Point2 z1 = camera1.project(landmark); if (verbose) z1.print("z1"); SharedDiagonal vmodel = noiseModel::Unit::Create(3); //ProjectionFactor test_vf(z1, vmodel, Pose3Key(1), Point3Key(1), shK); shared_vf vf1(new GenericProjectionFactor( z1, vmodel, Pose3Key(1), Point3Key(1), shK)); graph->push_back(vf1); Point2 z2 = camera2.project(landmark); if (verbose) z2.print("z2"); shared_vf vf2(new GenericProjectionFactor( z2, vmodel, Pose3Key(2), Point3Key(1), shK)); graph->push_back(vf2); if (verbose) graph->print("Graph after construction"); // create ordering shared_ptr ord(new Ordering()); *ord += "x1", "x2", "l1"; // create optimizer VOptimizer::shared_solver solver(new VOptimizer::solver(ord)); VOptimizer optimizer(graph, truthConfig, solver); // optimize VOptimizer afterOneIteration = optimizer.iterate(); // verify DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9); // check if correct if (verbose) afterOneIteration.config()->print("After iteration"); CHECK(assert_equal(*truthConfig,*(afterOneIteration.config()))); } /* ********************************************************************* * Ground truth for a visual SLAM example with stereo vision * with some noise injected into the initial config */ TEST (SQP, stereo_truth_noisy ) { bool verbose = false; // setting to determine how far away the noisy landmark is, // given that the ground truth is 5m in front of the cameras double noisyDist = 7.6; // create initial estimates Rot3 faceDownY(Matrix_(3,3, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0)); Pose3 pose1(faceDownY, Point3()); // origin, left camera SimpleCamera camera1(K, pose1); Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left SimpleCamera camera2(K, pose2); Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out // create truth config boost::shared_ptr truthConfig(new VConfig); truthConfig->insert(Pose3Key(1), camera1.pose()); truthConfig->insert(Pose3Key(2), camera2.pose()); truthConfig->insert(Point3Key(1), landmark); // create config boost::shared_ptr noisyConfig(new VConfig); noisyConfig->insert(Pose3Key(1), camera1.pose()); noisyConfig->insert(Pose3Key(2), camera2.pose()); noisyConfig->insert(Point3Key(1), landmarkNoisy); // create graph shared_ptr graph(new VGraph()); // create equality constraints for poses graph->push_back(shared_ptr(new Pose3Constraint(Pose3Key(1), camera1.pose()))); graph->push_back(shared_ptr(new Pose3Constraint(Pose3Key(2), camera2.pose()))); // create VSLAM factors Point2 z1 = camera1.project(landmark); if (verbose) z1.print("z1"); SharedDiagonal vmodel = noiseModel::Unit::Create(3); shared_vf vf1(new GenericProjectionFactor( z1, vmodel, Pose3Key(1), Point3Key(1), shK)); graph->push_back(vf1); Point2 z2 = camera2.project(landmark); if (verbose) z2.print("z2"); shared_vf vf2(new GenericProjectionFactor( z2, vmodel, Pose3Key(2), Point3Key(1), shK)); graph->push_back(vf2); if (verbose) { graph->print("Graph after construction"); noisyConfig->print("Initial config"); } // create ordering shared_ptr ord(new Ordering()); *ord += "x1", "x2", "l1"; // create optimizer VOptimizer::shared_solver solver(new VOptimizer::solver(ord)); VOptimizer optimizer0(graph, noisyConfig, solver); if (verbose) cout << "Initial Error: " << optimizer0.error() << endl; // use Levenberg-Marquardt optimization double relThresh = 1e-5, absThresh = 1e-5; VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT)); // verify DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9); // check if correct if (verbose) { optimizer.config()->print("After iteration"); cout << "Final error: " << optimizer.error() << endl; } CHECK(assert_equal(*truthConfig,*(optimizer.config()))); } /* ********************************************************************* */ namespace sqp_stereo { // binary constraint between landmarks /** g(x) = x-y = 0 */ Vector g(const VConfig& config, const list& keys) { return config[keys.front()].vector() - config[keys.back()].vector(); } /** jacobian at l1 */ Matrix G1(const VConfig& config, const list& keys) { return eye(3); } /** jacobian at l2 */ Matrix G2(const VConfig& config, const list& keys) { return -1.0 * eye(3); } } // \namespace sqp_stereo /* ********************************************************************* */ boost::shared_ptr stereoExampleGraph() { // create initial estimates Rot3 faceDownY(Matrix_(3,3, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0)); Pose3 pose1(faceDownY, Point3()); // origin, left camera SimpleCamera camera1(K, pose1); Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left SimpleCamera camera2(K, pose2); Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away Point3 landmark2(1.0, 5.0, 0.0); // create graph shared_ptr graph(new VGraph); // create equality constraints for poses graph->push_back(shared_ptr(new Pose3Constraint(Pose3Key(1), camera1.pose()))); graph->push_back(shared_ptr(new Pose3Constraint(Pose3Key(2), camera2.pose()))); // create factors Point2 z1 = camera1.project(landmark1); SharedDiagonal vmodel = noiseModel::Unit::Create(3); shared_vf vf1(new GenericProjectionFactor( z1, vmodel, Pose3Key(1), Point3Key(1), shK)); graph->push_back(vf1); Point2 z2 = camera2.project(landmark2); shared_vf vf2(new GenericProjectionFactor( z2, vmodel, Pose3Key(2), Point3Key(2), shK)); graph->push_back(vf2); // create the binary equality constraint between the landmarks // NOTE: this is really just a linear constraint that is exactly the same // as the previous examples visualSLAM::PointKey l1(1), l2(2); list keys; keys += l1, l2; LagrangeKey L12(12); shared_ptr c2( new VNLC2(boost::bind(sqp_stereo::g, _1, keys), l1, boost::bind(sqp_stereo::G1, _1, keys), l2, boost::bind(sqp_stereo::G2, _1, keys), 3, L12)); graph->push_back(c2); return graph; } /* ********************************************************************* */ boost::shared_ptr stereoExampleTruthConfig() { // create initial estimates Rot3 faceDownY(Matrix_(3,3, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0)); Pose3 pose1(faceDownY, Point3()); // origin, left camera SimpleCamera camera1(K, pose1); Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left SimpleCamera camera2(K, pose2); Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away Point3 landmark2(1.0, 5.0, 0.0); // create config boost::shared_ptr truthConfig(new VConfig); truthConfig->insert(Pose3Key(1), camera1.pose()); truthConfig->insert(Pose3Key(2), camera2.pose()); truthConfig->insert(Point3Key(1), landmark1); truthConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place //truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0)); return truthConfig; } /* ********************************************************************* * SQP version of the above stereo example, * with the initial case as the ground truth */ TEST (SQP, stereo_sqp ) { bool verbose = false; // get a graph boost::shared_ptr graph = stereoExampleGraph(); if (verbose) graph->print("Graph after construction"); // get the truth config boost::shared_ptr truthConfig = stereoExampleTruthConfig(); truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0)); // create ordering shared_ptr ord(new Ordering()); *ord += "x1", "x2", "l1", "l2", "L12"; VOptimizer::shared_solver solver(new VOptimizer::solver(ord)); // create optimizer VOptimizer optimizer(graph, truthConfig, solver); // // optimize // VOptimizer afterOneIteration = optimizer.iterate(); // // // check if correct // CHECK(assert_equal(*truthConfig,*(afterOneIteration.config()))); } ///* ********************************************************************* // * SQP version of the above stereo example, // * with noise in the initial estimate // */ //TEST (SQP, stereo_sqp_noisy ) { // bool verbose = false; // // // get a graph // boost::shared_ptr graph = stereoExampleGraph(); // // // create initial data // Rot3 faceDownY(Matrix_(3,3, // 1.0, 0.0, 0.0, // 0.0, 0.0, 1.0, // 0.0, 1.0, 0.0)); // Pose3 pose1(faceDownY, Point3()); // origin, left camera // Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left // Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away // Point3 landmark2(1.5, 5.0, 0.0); // // // noisy config // boost::shared_ptr initConfig(new VConfig); // initConfig->insert(Pose3Key(1), pose1); // initConfig->insert(Pose3Key(2), pose2); // initConfig->insert(Point3Key(1), landmark1); // initConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place // initConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0)); // // // create ordering // shared_ptr ord(new Ordering()); // *ord += "x1", "x2", "l1", "l2", "L12"; // VOptimizer::shared_solver solver(new VOptimizer::solver(ord)); // // // create optimizer // VOptimizer optimizer(graph, initConfig, solver); // // // optimize // VOptimizer *pointer = new VOptimizer(optimizer); // for (int i=0;i<1;i++) { // VOptimizer* newOptimizer = new VOptimizer(pointer->iterateLM()); // delete pointer; // pointer = newOptimizer; // } // VOptimizer::shared_config actual = pointer->config(); // delete(pointer); // // // get the truth config // boost::shared_ptr truthConfig = stereoExampleTruthConfig(); // truthConfig->insert(LagrangeKey(12), Vector_(3, 0.0, 1.0, 1.0)); // // // check if correct // CHECK(assert_equal(*truthConfig,*actual, 1e-5)); //} // //static SharedGaussian sigma(noiseModel::Isotropic::Sigma(1,0.1)); // //// typedefs ////typedef simulated2D::Config Config2D; ////typedef boost::shared_ptr shared_config; ////typedef NonlinearFactorGraph NLGraph; ////typedef boost::shared_ptr > shared; // //namespace map_warp_example { //typedef NonlinearConstraint1< // Config2D, simulated2D::PoseKey, Point2> NLC1; ////typedef NonlinearConstraint2< //// Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2; //} // \namespace map_warp_example // ///* ********************************************************************* */ //// Example that moves two separate maps into the same frame of reference //// Note that this is a linear example, so it should converge in one step ///* ********************************************************************* */ // //namespace sqp_LinearMapWarp2 { //// binary constraint between landmarks ///** g(x) = x-y = 0 */ //Vector g_func(const Config2D& config, const simulated2D::PointKey& key1, const simulated2D::PointKey& key2) { // Point2 p = config[key1]-config[key2]; // return Vector_(2, p.x(), p.y()); //} // ///** jacobian at l1 */ //Matrix jac_g1(const Config2D& config) { // return eye(2); //} // ///** jacobian at l2 */ //Matrix jac_g2(const Config2D& config) { // return -1*eye(2); //} //} // \namespace sqp_LinearMapWarp2 // //namespace sqp_LinearMapWarp1 { //// Unary Constraint on x1 ///** g(x) = x -[1;1] = 0 */ //Vector g_func(const Config2D& config, const simulated2D::PoseKey& key) { // Point2 p = config[key]-Point2(1.0, 1.0); // return Vector_(2, p.x(), p.y()); //} // ///** jacobian at x1 */ //Matrix jac_g(const Config2D& config) { // return eye(2); //} //} // \namespace sqp_LinearMapWarp12 //typedef NonlinearOptimizer Optimizer; /** * Creates the graph with each robot seeing the landmark, and it is * known that it is the same landmark */ //boost::shared_ptr linearMapWarpGraph() { // using namespace map_warp_example; // // keys // simulated2D::PoseKey x1(1), x2(2); // simulated2D::PointKey l1(1), l2(2); // // // constant constraint on x1 // LagrangeKey L1(1); // shared_ptr c1(new NLC1(boost::bind(sqp_LinearMapWarp1::g_func, _1, x1), // x1, boost::bind(sqp_LinearMapWarp1::jac_g, _1), // 2, L1)); // // // measurement from x1 to l1 // Point2 z1(0.0, 5.0); // shared f1(new simulated2D::GenericMeasurement(z1, sigma, x1,l1)); // // // measurement from x2 to l2 // Point2 z2(-4.0, 0.0); // shared f2(new simulated2D::GenericMeasurement(z2, sigma, x2,l2)); // // // equality constraint between l1 and l2 // LagrangeKey L12(12); // shared_ptr c2 (new NLC2( // boost::bind(sqp_LinearMapWarp2::g_func, _1, l1, l2), // l1, boost::bind(sqp_LinearMapWarp2::jac_g1, _1), // l2, boost::bind(sqp_LinearMapWarp2::jac_g2, _1), // 2, L12)); // // // construct the graph // boost::shared_ptr graph(new Graph2D()); // graph->push_back(c1); // graph->push_back(c2); // graph->push_back(f1); // graph->push_back(f2); // // return graph; //} // ///* ********************************************************************* */ //TEST ( SQPOptimizer, map_warp_initLam ) { // bool verbose = false; // // get a graph // boost::shared_ptr graph = linearMapWarpGraph(); // // // keys // simulated2D::PoseKey x1(1), x2(2); // simulated2D::PointKey l1(1), l2(2); // LagrangeKey L1(1), L12(12); // // // create an initial estimate // shared_ptr initialEstimate(new Config2D); // initialEstimate->insert(x1, Point2(1.0, 1.0)); // initialEstimate->insert(l1, Point2(1.0, 6.0)); // initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame // initialEstimate->insert(x2, Point2(0.0, 0.0)); // other pose starts at origin // initialEstimate->insert(L12, Vector_(2, 1.0, 1.0)); // initialEstimate->insert(L1, Vector_(2, 1.0, 1.0)); // // // create an ordering // shared_ptr ordering(new Ordering()); // *ordering += "x1", "x2", "l1", "l2", "L12", "L1"; // // // create an optimizer // Optimizer::shared_solver solver(new Optimizer::solver(ordering)); // Optimizer optimizer(graph, initialEstimate, solver); // // // perform an iteration of optimization // Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT); // // // get the config back out and verify // Config2D actual = *(oneIteration.config()); // Config2D expected; // expected.insert(x1, Point2(1.0, 1.0)); // expected.insert(l1, Point2(1.0, 6.0)); // expected.insert(l2, Point2(1.0, 6.0)); // expected.insert(x2, Point2(5.0, 6.0)); // expected.insert(L1, Vector_(2, 1.0, 1.0)); // expected.insert(L12, Vector_(2, 6.0, 7.0)); // CHECK(assert_equal(expected, actual)); //} ///* ********************************************************************* */ //// This is an obstacle avoidance demo, where there is a trajectory of //// three points, where there is a circular obstacle in the middle. There //// is a binary inequality constraint connecting the obstacle to the //// states, which enforces a minimum distance. ///* ********************************************************************* */ // //typedef NonlinearConstraint2 AvoidConstraint; //typedef shared_ptr shared_a; //typedef NonlinearEquality PoseConstraint; //typedef shared_ptr shared_pc; //typedef NonlinearEquality ObstacleConstraint; //typedef shared_ptr shared_oc; // // //namespace sqp_avoid1 { //// avoidance radius //double radius = 1.0; // //// binary avoidance constraint ///** g(x) = ||x2-obs||^2 - radius^2 > 0 */ //Vector g_func(const Config2D& config, const PoseKey& x, const PointKey& obs) { // double dist2 = config[x].dist(config[obs]); // double thresh = radius*radius; // return Vector_(1, dist2-thresh); //} // ///** jacobian at pose */ //Matrix jac_g1(const Config2D& config, const PoseKey& x, const PointKey& obs) { // Point2 p = config[x]-config[obs]; // return Matrix_(1,2, 2.0*p.x(), 2.0*p.y()); //} // ///** jacobian at obstacle */ //Matrix jac_g2(const Config2D& config, const PoseKey& x, const PointKey& obs) { // Point2 p = config[x]-config[obs]; // return Matrix_(1,2, -2.0*p.x(), -2.0*p.y()); //} //} // //pair obstacleAvoidGraph() { // // Keys // PoseKey x1(1), x2(2), x3(3); // PointKey l1(1); // LagrangeKey L20(20); // // // Constrained Points // Point2 pt_x1, // pt_x3(10.0, 0.0), // pt_l1(5.0, -0.5); // // shared_pc e1(new PoseConstraint(x1, pt_x1)); // shared_pc e2(new PoseConstraint(x3, pt_x3)); // shared_oc e3(new ObstacleConstraint(l1, pt_l1)); // // // measurement from x1 to x2 // Point2 x1x2(5.0, 0.0); // shared f1(new simulated2D::Odometry(x1x2, sigma, 1,2)); // // // measurement from x2 to x3 // Point2 x2x3(5.0, 0.0); // shared f2(new simulated2D::Odometry(x2x3, sigma, 2,3)); // // // create a binary inequality constraint that forces the middle point away from // // the obstacle // shared_a c1(new AvoidConstraint(boost::bind(sqp_avoid1::g_func, _1, x2, l1), // x2, boost::bind(sqp_avoid1::jac_g1, _1, x2, l1), // l1,boost::bind(sqp_avoid1::jac_g2, _1, x2, l1), // 1, L20, false)); // // // construct the graph // NLGraph graph; // graph.push_back(e1); // graph.push_back(e2); // graph.push_back(e3); // graph.push_back(c1); // graph.push_back(f1); // graph.push_back(f2); // // // make a config of the fixed values, for convenience // Config2D config; // config.insert(x1, pt_x1); // config.insert(x3, pt_x3); // config.insert(l1, pt_l1); // // return make_pair(graph, config); //} // ///* ********************************************************************* */ //TEST ( SQPOptimizer, inequality_avoid ) { // // create the graph // NLGraph graph; Config2D feasible; // boost::tie(graph, feasible) = obstacleAvoidGraph(); // // // create the rest of the config // shared_ptr init(new Config2D(feasible)); // PoseKey x2(2); // init->insert(x2, Point2(5.0, 100.0)); // // // create an ordering // Ordering ord; // ord += "x1", "x2", "x3", "l1"; // // // create an optimizer // Optimizer optimizer(graph, ord, init); // // // perform an iteration of optimization // // NOTE: the constraint will be inactive in the first iteration, // // so it will violate the constraint after one iteration // Optimizer afterOneIteration = optimizer.iterate(Optimizer::SILENT); // // Config2D exp1(feasible); // exp1.insert(x2, Point2(5.0, 0.0)); // CHECK(assert_equal(exp1, *(afterOneIteration.config()))); // // // the second iteration will activate the constraint and force the // // config to a viable configuration. // Optimizer after2ndIteration = afterOneIteration.iterate(Optimizer::SILENT); // // Config2D exp2(feasible); // exp2.insert(x2, Point2(5.0, 0.5)); // CHECK(assert_equal(exp2, *(after2ndIteration.config()))); //} // ///* ********************************************************************* */ //TEST ( SQPOptimizer, inequality_avoid_iterative ) { // // create the graph // NLGraph graph; Config2D feasible; // boost::tie(graph, feasible) = obstacleAvoidGraph(); // // // create the rest of the config // shared_ptr init(new Config2D(feasible)); // PoseKey x2(2); // init->insert(x2, Point2(5.0, 100.0)); // // // create an ordering // Ordering ord; // ord += "x1", "x2", "x3", "l1"; // // // create an optimizer // Optimizer optimizer(graph, ord, init); // // double relThresh = 1e-5; // minimum change in error between iterations // double absThresh = 1e-5; // minimum error necessary to converge // double constraintThresh = 1e-9; // minimum constraint error to be feasible // Optimizer final = optimizer.iterateSolve(relThresh, absThresh, constraintThresh); // // // verify // Config2D exp2(feasible); // exp2.insert(x2, Point2(5.0, 0.5)); // CHECK(assert_equal(exp2, *(final.config()))); //} /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */