/** * GTSAM Wrap Module Definition * * These are the current classes available through the matlab toolbox interface, * add more functions/classes as they are available. * * Requirements: * Classes must start with an uppercase letter * Only one Method/Constructor per line * Methods can return * - Eigen types: Matrix, Vector * - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char * - void * - Any class with which be copied with boost::make_shared() * - boost::shared_ptr of any object type * Limitations on methods * - Parsing does not support overloading * - There can only be one method (static or otherwise) with a given name * Arguments to functions any of * - Eigen types: Matrix, Vector * - Eigen types and classes as an optionally const reference * - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char * - Any class with which be copied with boost::make_shared() (except Eigen) * - boost::shared_ptr of any object type (except Eigen) * Comments can use either C++ or C style, with multiple lines * Namespace definitions * - Names of namespaces must start with a lowercase letter * - start a namespace with "namespace {" * - end a namespace with exactly "}///\namespace [namespace_name]", optionally adding the name of the namespace * - This ending is not C++ standard, and must contain "}///\namespace" to parse * - Namespaces can be nested * Namespace usage * - Namespaces can be specified for classes in arguments and return values * - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName" * Using namespace * - To use a namespace (e.g., generate a "using namespace x" line in cpp files), add "using namespace x;" * - This declaration applies to all classes *after* the declaration, regardless of brackets * Methods must start with a lowercase letter * Static methods must start with a letter (upper or lowercase) and use the "static" keyword * Includes in C++ wrappers * - By default, the include will be <[classname].h> * - All namespaces must have angle brackets: * - To override, add a full include statement just before the class statement * - An override include can be added for a namespace by placing it just before the namespace statement * - Both classes and namespace accept exactly one namespace * Overriding type dependency checks * - If you are using a class 'OtherClass' not wrapped in this definition file, add "class OtherClass;" to avoid a dependency error * - Limitation: this only works if the class does not need a namespace specification */ /** * Status: * - TODO: global functions * - TODO: default values for arguments * - TODO: overloaded functions * - TODO: signatures for constructors can be ambiguous if two types have the same first letter * - TODO: Handle gtsam::Rot3M conversions to quaternions */ namespace gtsam { //************************************************************************* // base //************************************************************************* //************************************************************************* // geometry //************************************************************************* class Point2 { // Standard Constructors Point2(); Point2(double x, double y); Point2(Vector v); // Testable void print(string s) const; bool equals(const gtsam::Point2& pose, double tol) const; // Group static gtsam::Point2 identity(); gtsam::Point2 inverse() const; gtsam::Point2 compose(const gtsam::Point2& p2) const; gtsam::Point2 between(const gtsam::Point2& p2) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::Point2 retract(Vector v) const; Vector localCoordinates(const gtsam::Point2& p) const; // Lie Group static gtsam::Point2 Expmap(Vector v); static Vector Logmap(const gtsam::Point2& p); // Standard Interface double x() const; double y() const; Vector vector() const; }; class StereoPoint2 { // Standard Constructors StereoPoint2(); StereoPoint2(double uL, double uR, double v); // Testable void print(string s) const; bool equals(const gtsam::StereoPoint2& point, double tol) const; // Group static gtsam::StereoPoint2 identity(); gtsam::StereoPoint2 inverse() const; gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const; gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::StereoPoint2 retract(Vector v) const; Vector localCoordinates(const gtsam::StereoPoint2& p) const; // Lie Group static gtsam::StereoPoint2 Expmap(Vector v); static Vector Logmap(const gtsam::StereoPoint2& p); // Standard Interface Vector vector() const; }; class Point3 { // Standard Constructors Point3(); Point3(double x, double y, double z); Point3(Vector v); // Testable void print(string s) const; bool equals(const gtsam::Point3& p, double tol) const; // Group static gtsam::Point3 identity(); gtsam::Point3 inverse() const; gtsam::Point3 compose(const gtsam::Point3& p2) const; gtsam::Point3 between(const gtsam::Point3& p2) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::Point3 retract(Vector v) const; Vector localCoordinates(const gtsam::Point3& p) const; // Lie Group static gtsam::Point3 Expmap(Vector v); static Vector Logmap(const gtsam::Point3& p); // Standard Interface Vector vector() const; double x() const; double y() const; double z() const; }; class Rot2 { // Standard Constructors and Named Constructors Rot2(); Rot2(double theta); static gtsam::Rot2 fromAngle(double theta); static gtsam::Rot2 fromDegrees(double theta); static gtsam::Rot2 fromCosSin(double c, double s); // Testable void print(string s) const; bool equals(const gtsam::Rot2& rot, double tol) const; // Group static gtsam::Rot2 identity(); gtsam::Rot2 inverse(); gtsam::Rot2 compose(const gtsam::Rot2& p2) const; gtsam::Rot2 between(const gtsam::Rot2& p2) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::Rot2 retract(Vector v) const; Vector localCoordinates(const gtsam::Rot2& p) const; // Lie Group static gtsam::Rot2 Expmap(Vector v); static Vector Logmap(const gtsam::Rot2& p); // Group Action on Point2 gtsam::Point2 rotate(const gtsam::Point2& point) const; gtsam::Point2 unrotate(const gtsam::Point2& point) const; // Standard Interface static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative static gtsam::Rot2 atan2(double y, double x); double theta() const; double degrees() const; double c() const; double s() const; Matrix matrix() const; }; class Rot3 { // Standard Constructors and Named Constructors Rot3(); Rot3(Matrix R); static gtsam::Rot3 Rx(double t); static gtsam::Rot3 Ry(double t); static gtsam::Rot3 Rz(double t); // static gtsam::Rot3 RzRyRx(double x, double y, double z); // FIXME: overloaded functions don't work yet static gtsam::Rot3 RzRyRx(Vector xyz); static gtsam::Rot3 yaw(double t); // positive yaw is to right (as in aircraft heading) static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude) static gtsam::Rot3 roll(double t); // positive roll is to right (increasing yaw in aircraft) static gtsam::Rot3 ypr(double y, double p, double r); static gtsam::Rot3 quaternion(double w, double x, double y, double z); static gtsam::Rot3 rodriguez(Vector v); // Testable void print(string s) const; bool equals(const gtsam::Rot3& rot, double tol) const; // Group static gtsam::Rot3 identity(); gtsam::Rot3 inverse() const; gtsam::Rot3 compose(const gtsam::Rot3& p2) const; gtsam::Rot3 between(const gtsam::Rot3& p2) const; // Manifold static size_t Dim(); size_t dim() const; // gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options gtsam::Rot3 retract(Vector v) const; Vector localCoordinates(const gtsam::Rot3& p) const; // Group Action on Point3 gtsam::Point3 rotate(const gtsam::Point3& p) const; gtsam::Point3 unrotate(const gtsam::Point3& p) const; // Standard Interface static gtsam::Rot3 Expmap(Vector v); static Vector Logmap(const gtsam::Rot3& p); Matrix matrix() const; Matrix transpose() const; gtsam::Point3 column(size_t index) const; Vector xyz() const; Vector ypr() const; Vector rpy() const; double roll() const; double pitch() const; double yaw() const; // Vector toQuaternion() const; // FIXME: Can't cast to Vector properly }; class Pose2 { // Standard Constructor Pose2(); Pose2(double x, double y, double theta); Pose2(double theta, const gtsam::Point2& t); Pose2(const gtsam::Rot2& r, const gtsam::Point2& t); Pose2(Vector v); // Testable void print(string s) const; bool equals(const gtsam::Pose2& pose, double tol) const; // Group static gtsam::Pose2 identity(); gtsam::Pose2 inverse() const; gtsam::Pose2 compose(const gtsam::Pose2& p2) const; gtsam::Pose2 between(const gtsam::Pose2& p2) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::Pose2 retract(Vector v) const; Vector localCoordinates(const gtsam::Pose2& p) const; // Lie Group static gtsam::Pose2 Expmap(Vector v); static Vector Logmap(const gtsam::Pose2& p); Matrix adjointMap() const; Vector adjoint(const Vector& xi) const; static Matrix wedge(double vx, double vy, double w); // Group Actions on Point2 gtsam::Point2 transform_from(const gtsam::Point2& p) const; gtsam::Point2 transform_to(const gtsam::Point2& p) const; // Standard Interface double x() const; double y() const; double theta() const; gtsam::Rot2 bearing(const gtsam::Point2& point) const; double range(const gtsam::Point2& point) const; gtsam::Point2 translation() const; gtsam::Rot2 rotation() const; Matrix matrix() const; }; class Pose3 { // Standard Constructors Pose3(); Pose3(const gtsam::Pose3& pose); Pose3(const gtsam::Rot3& r, const gtsam::Point3& t); // Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose) Pose3(Matrix t); // Testable void print(string s) const; bool equals(const gtsam::Pose3& pose, double tol) const; // Group static gtsam::Pose3 identity(); gtsam::Pose3 inverse() const; gtsam::Pose3 compose(const gtsam::Pose3& p2) const; gtsam::Pose3 between(const gtsam::Pose3& p2) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::Pose3 retract(Vector v) const; gtsam::Pose3 retractFirstOrder(Vector v) const; Vector localCoordinates(const gtsam::Pose3& T2) const; // Lie Group static gtsam::Pose3 Expmap(Vector v); static Vector Logmap(const gtsam::Pose3& p); Matrix adjointMap() const; Vector adjoint(const Vector& xi) const; static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz); // Group Action on Point3 gtsam::Point3 transform_from(const gtsam::Point3& p) const; gtsam::Point3 transform_to(const gtsam::Point3& p) const; // Standard Interface gtsam::Rot3 rotation() const; gtsam::Point3 translation() const; double x() const; double y() const; double z() const; Matrix matrix() const; // gtsam::Pose3 transform_to(const gtsam::Pose3& pose) const; // FIXME: shadows other transform_to() double range(const gtsam::Point3& point); // double range(const gtsam::Pose3& pose); // FIXME: shadows other range }; class Cal3_S2 { // Standard Constructors Cal3_S2(); Cal3_S2(double fx, double fy, double s, double u0, double v0); // Testable void print(string s) const; bool equals(const gtsam::Cal3_S2& pose, double tol) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::Cal3_S2 retract(Vector v) const; Vector localCoordinates(const gtsam::Cal3_S2& c) const; // Action on Point2 gtsam::Point2 calibrate(const gtsam::Point2& p) const; gtsam::Point2 uncalibrate(const gtsam::Point2& p) const; // Standard Interface double fx() const; double fy() const; double skew() const; double px() const; double py() const; gtsam::Point2 principalPoint() const; Vector vector() const; Matrix matrix() const; Matrix matrix_inverse() const; }; class Cal3_S2Stereo { // Standard Constructors Cal3_S2Stereo(); Cal3_S2Stereo(double fx, double fy, double s, double u0, double v0, double b); // Testable void print(string s) const; bool equals(const gtsam::Cal3_S2Stereo& pose, double tol) const; // Standard Interface double fx() const; double fy() const; double skew() const; double px() const; double py() const; gtsam::Point2 principalPoint() const; double baseline() const; }; class CalibratedCamera { // Standard Constructors and Named Constructors CalibratedCamera(); CalibratedCamera(const gtsam::Pose3& pose); CalibratedCamera(const Vector& v); gtsam::CalibratedCamera level(const gtsam::Pose2& pose2, double height); // Testable void print(string s) const; bool equals(const gtsam::CalibratedCamera& camera, double tol) const; // Manifold static size_t Dim(); size_t dim() const; gtsam::CalibratedCamera retract(const Vector& d) const; Vector localCoordinates(const gtsam::CalibratedCamera& T2) const; // Group gtsam::CalibratedCamera compose(const gtsam::CalibratedCamera& c) const; gtsam::CalibratedCamera inverse() const; // Action on Point3 gtsam::Point2 project(const gtsam::Point3& point) const; static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint); // Standard Interface gtsam::Pose3 pose() const; double range(const gtsam::Point3& p) const; // TODO: Other overloaded range methods }; class SimpleCamera { // Standard Constructors and Named Constructors SimpleCamera(); SimpleCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2& k); SimpleCamera(const gtsam::Cal3_S2& k, const gtsam::Pose3& pose); // Testable void print(string s) const; bool equals(const gtsam::SimpleCamera& camera, double tol) const; // Action on Point3 gtsam::Point2 project(const gtsam::Point3& point); static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint); // Backprojection gtsam::Point3 backproject(const gtsam::Point2& pi, double scale) const; gtsam::Point3 backproject_from_camera(const gtsam::Point2& pi, double scale) const; // Standard Interface gtsam::Pose3 pose() const; // Convenient generators static gtsam::SimpleCamera lookat(const gtsam::Point3& eye, const gtsam::Point3& target, const gtsam::Point3& upVector, const gtsam::Cal3_S2& k); }; //************************************************************************* // inference //************************************************************************* //************************************************************************* // linear //************************************************************************* class SharedGaussian { SharedGaussian(Matrix covariance); void print(string s) const; }; class SharedDiagonal { SharedDiagonal(Vector sigmas); void print(string s) const; Vector sample() const; }; class SharedNoiseModel { static gtsam::SharedNoiseModel Sigmas(Vector sigmas); static gtsam::SharedNoiseModel Sigma(size_t dim, double sigma); static gtsam::SharedNoiseModel Precisions(Vector precisions); static gtsam::SharedNoiseModel Precision(size_t dim, double precision); static gtsam::SharedNoiseModel Unit(size_t dim); static gtsam::SharedNoiseModel SqrtInformation(Matrix R); static gtsam::SharedNoiseModel Covariance(Matrix covariance); void print(string s) const; }; class VectorValues { VectorValues(); VectorValues(size_t nVars, size_t varDim); void print(string s) const; bool equals(const gtsam::VectorValues& expected, double tol) const; size_t size() const; void insert(size_t j, Vector value); }; class GaussianConditional { GaussianConditional(size_t key, Vector d, Matrix R, Vector sigmas); GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S, Vector sigmas); GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S, size_t name2, Matrix T, Vector sigmas); void print(string s) const; bool equals(const gtsam::GaussianConditional &cg, double tol) const; }; class GaussianDensity { GaussianDensity(size_t key, Vector d, Matrix R, Vector sigmas); void print(string s) const; Vector mean() const; Matrix information() const; Matrix covariance() const; }; class GaussianBayesNet { GaussianBayesNet(); void print(string s) const; bool equals(const gtsam::GaussianBayesNet& cbn, double tol) const; void push_back(gtsam::GaussianConditional* conditional); void push_front(gtsam::GaussianConditional* conditional); }; class GaussianFactor { void print(string s) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; double error(const gtsam::VectorValues& c) const; }; class JacobianFactor { JacobianFactor(); JacobianFactor(Vector b_in); JacobianFactor(size_t i1, Matrix A1, Vector b, const gtsam::SharedDiagonal& model); JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b, const gtsam::SharedDiagonal& model); JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3, Vector b, const gtsam::SharedDiagonal& model); void print(string s) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; bool empty() const; Vector getb() const; double error(const gtsam::VectorValues& c) const; gtsam::GaussianConditional* eliminateFirst(); }; class HessianFactor { HessianFactor(const gtsam::HessianFactor& gf); HessianFactor(); HessianFactor(size_t j, Matrix G, Vector g, double f); HessianFactor(size_t j, Vector mu, Matrix Sigma); HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22, Vector g2, double f); HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13, Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3, double f); HessianFactor(const gtsam::GaussianConditional& cg); HessianFactor(const gtsam::GaussianFactor& factor); void print(string s) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; double error(const gtsam::VectorValues& c) const; }; class GaussianFactorGraph { GaussianFactorGraph(); GaussianFactorGraph(const gtsam::GaussianBayesNet& CBN); // From FactorGraph void push_back(gtsam::GaussianFactor* factor); void print(string s) const; bool equals(const gtsam::GaussianFactorGraph& lfgraph, double tol) const; size_t size() const; // Building the graph void add(gtsam::JacobianFactor* factor); // all these won't work as MATLAB can't handle overloading // void add(Vector b); // void add(size_t key1, Matrix A1, Vector b, const gtsam::SharedDiagonal& model); // void add(size_t key1, Matrix A1, size_t key2, Matrix A2, Vector b, // const gtsam::SharedDiagonal& model); // void add(size_t key1, Matrix A1, size_t key2, Matrix A2, size_t key3, Matrix A3, // Vector b, const gtsam::SharedDiagonal& model); // void add(gtsam::HessianFactor* factor); // error and probability double error(const gtsam::VectorValues& c) const; double probPrime(const gtsam::VectorValues& c) const; // combining static gtsam::GaussianFactorGraph combine2( const gtsam::GaussianFactorGraph& lfg1, const gtsam::GaussianFactorGraph& lfg2); void combine(const gtsam::GaussianFactorGraph& lfg); // Conversion to matrices Matrix sparseJacobian_() const; Matrix denseJacobian() const; Matrix denseHessian() const; }; class GaussianISAM { GaussianISAM(); void saveGraph(string s) const; gtsam::GaussianFactor* marginalFactor(size_t j) const; gtsam::GaussianBayesNet* marginalBayesNet(size_t key) const; Matrix marginalCovariance(size_t key) const; gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const; }; class GaussianSequentialSolver { GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph, bool useQR); gtsam::GaussianBayesNet* eliminate() const; gtsam::VectorValues* optimize() const; gtsam::GaussianFactor* marginalFactor(size_t j) const; Matrix marginalCovariance(size_t j) const; }; class KalmanFilter { KalmanFilter(size_t n); // gtsam::GaussianDensity* init(Vector x0, const gtsam::SharedDiagonal& P0); gtsam::GaussianDensity* init(Vector x0, Matrix P0); void print(string s) const; static size_t step(gtsam::GaussianDensity* p); gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, Matrix F, Matrix B, Vector u, const gtsam::SharedDiagonal& modelQ); gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, Matrix F, Matrix B, Vector u, Matrix Q); gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, Matrix A0, Matrix A1, Vector b, const gtsam::SharedDiagonal& model); gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, Matrix H, Vector z, const gtsam::SharedDiagonal& model); gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, Matrix H, Vector z, Matrix Q); }; //************************************************************************* // nonlinear //************************************************************************* class Symbol { Symbol(char c, size_t j); void print(string s) const; size_t key() const; }; class Ordering { Ordering(); void print(string s) const; bool equals(const gtsam::Ordering& ord, double tol) const; void push_back(size_t key); }; class NonlinearFactorGraph { NonlinearFactorGraph(); }; class Values { Values(); size_t size() const; void print(string s) const; bool exists(size_t j) const; }; class Marginals { Marginals(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& solution); void print(string s) const; Matrix marginalCovariance(size_t variable) const; Matrix marginalInformation(size_t variable) const; }; }///\namespace gtsam //************************************************************************* // Pose2SLAM //************************************************************************* #include namespace pose2SLAM { class Values { Values(); size_t size() const; void print(string s) const; static pose2SLAM::Values Circle(size_t n, double R); void insertPose(size_t key, const gtsam::Pose2& pose); void updatePose(size_t key, const gtsam::Pose2& pose); gtsam::Pose2 pose(size_t i); Vector xs() const; Vector ys() const; Vector thetas() const; }; class Graph { Graph(); // FactorGraph void print(string s) const; bool equals(const pose2SLAM::Graph& fg, double tol) const; size_t size() const; bool empty() const; void remove(size_t i); size_t nrFactors() const; // NonlinearFactorGraph double error(const pose2SLAM::Values& values) const; double probPrime(const pose2SLAM::Values& values) const; gtsam::Ordering* orderingCOLAMD(const pose2SLAM::Values& values) const; gtsam::GaussianFactorGraph* linearize(const pose2SLAM::Values& values, const gtsam::Ordering& ordering) const; // pose2SLAM-specific void addPrior(size_t key, const gtsam::Pose2& pose, const gtsam::SharedNoiseModel& noiseModel); void addPoseConstraint(size_t key, const gtsam::Pose2& pose); void addOdometry(size_t key1, size_t key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel); void addConstraint(size_t key1, size_t key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel); pose2SLAM::Values optimize(const pose2SLAM::Values& initialEstimate) const; pose2SLAM::Values optimizeSPCG(const pose2SLAM::Values& initialEstimate) const; gtsam::Marginals marginals(const pose2SLAM::Values& solution) const; }; }///\namespace pose2SLAM //************************************************************************* // Pose3SLAM //************************************************************************* #include namespace pose3SLAM { class Values { Values(); size_t size() const; void print(string s) const; static pose3SLAM::Values Circle(size_t n, double R); void insertPose(size_t key, const gtsam::Pose3& pose); void updatePose(size_t key, const gtsam::Pose3& pose); gtsam::Pose3 pose(size_t i); Vector xs() const; Vector ys() const; Vector zs() const; }; class Graph { Graph(); // FactorGraph void print(string s) const; bool equals(const pose3SLAM::Graph& fg, double tol) const; size_t size() const; bool empty() const; void remove(size_t i); size_t nrFactors() const; // NonlinearFactorGraph double error(const pose3SLAM::Values& values) const; double probPrime(const pose3SLAM::Values& values) const; gtsam::Ordering* orderingCOLAMD(const pose3SLAM::Values& values) const; gtsam::GaussianFactorGraph* linearize(const pose3SLAM::Values& values, const gtsam::Ordering& ordering) const; // pose3SLAM-specific void addPrior(size_t key, const gtsam::Pose3& p, const gtsam::SharedNoiseModel& model); void addConstraint(size_t key1, size_t key2, const gtsam::Pose3& z, const gtsam::SharedNoiseModel& model); void addHardConstraint(size_t i, const gtsam::Pose3& p); pose3SLAM::Values optimize(const pose3SLAM::Values& initialEstimate) const; gtsam::Marginals marginals(const pose3SLAM::Values& solution) const; }; }///\namespace pose3SLAM //************************************************************************* // planarSLAM //************************************************************************* #include namespace planarSLAM { class Values { Values(); size_t size() const; void print(string s) const; void insertPose(size_t key, const gtsam::Pose2& pose); void insertPoint(size_t key, const gtsam::Point2& point); void updatePose(size_t key, const gtsam::Pose2& pose); void updatePoint(size_t key, const gtsam::Point2& point); gtsam::Pose2 pose(size_t key) const; gtsam::Point2 point(size_t key) const; }; class Graph { Graph(); // FactorGraph void print(string s) const; bool equals(const planarSLAM::Graph& fg, double tol) const; size_t size() const; bool empty() const; void remove(size_t i); size_t nrFactors() const; // NonlinearFactorGraph double error(const planarSLAM::Values& values) const; double probPrime(const planarSLAM::Values& values) const; gtsam::Ordering* orderingCOLAMD(const planarSLAM::Values& values) const; gtsam::GaussianFactorGraph* linearize(const planarSLAM::Values& values, const gtsam::Ordering& ordering) const; // planarSLAM-specific void addPrior(size_t key, const gtsam::Pose2& pose, const gtsam::SharedNoiseModel& noiseModel); void addPoseConstraint(size_t key, const gtsam::Pose2& pose); void addOdometry(size_t key1, size_t key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel); void addBearing(size_t poseKey, size_t pointKey, const gtsam::Rot2& bearing, const gtsam::SharedNoiseModel& noiseModel); void addRange(size_t poseKey, size_t pointKey, double range, const gtsam::SharedNoiseModel& noiseModel); void addBearingRange(size_t poseKey, size_t pointKey, const gtsam::Rot2& bearing,double range, const gtsam::SharedNoiseModel& noiseModel); planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate); gtsam::Marginals marginals(const planarSLAM::Values& solution) const; }; class Odometry { Odometry(size_t key1, size_t key2, const gtsam::Pose2& measured, const gtsam::SharedNoiseModel& model); void print(string s) const; gtsam::GaussianFactor* linearize(const planarSLAM::Values& center, const gtsam::Ordering& ordering) const; }; }///\namespace planarSLAM //************************************************************************* // Simulated2D //************************************************************************* #include namespace simulated2D { class Values { Values(); void insertPose(size_t i, const gtsam::Point2& p); void insertPoint(size_t j, const gtsam::Point2& p); size_t nrPoses() const; size_t nrPoints() const; gtsam::Point2 pose(size_t i); gtsam::Point2 point(size_t j); }; class Graph { Graph(); }; // TODO: add factors, etc. }///\namespace simulated2D // Simulated2DOriented Example Domain #include namespace simulated2DOriented { class Values { Values(); void insertPose(size_t i, const gtsam::Pose2& p); void insertPoint(size_t j, const gtsam::Point2& p); size_t nrPoses() const; size_t nrPoints() const; gtsam::Pose2 pose(size_t i); gtsam::Point2 point(size_t j); }; class Graph { Graph(); }; // TODO: add factors, etc. }///\namespace simulated2DOriented //************************************************************************* // VisualSLAM //************************************************************************* #include namespace visualSLAM { class Values { Values(); void insertPose(size_t key, const gtsam::Pose3& pose); void insertPoint(size_t key, const gtsam::Point3& pose); void updatePose(size_t key, const gtsam::Pose3& pose); void updatePoint(size_t key, const gtsam::Point3& pose); size_t size() const; void print(string s) const; gtsam::Pose3 pose(size_t i); gtsam::Point3 point(size_t j); bool exists(size_t key); Vector xs() const; Vector ys() const; Vector zs() const; Matrix points() const; }; class Graph { Graph(); void print(string s) const; double error(const visualSLAM::Values& values) const; gtsam::Ordering* orderingCOLAMD(const visualSLAM::Values& values) const; gtsam::GaussianFactorGraph* linearize(const visualSLAM::Values& values, const gtsam::Ordering& ordering) const; // Measurements void addMeasurement(const gtsam::Point2& measured, const gtsam::SharedNoiseModel& model, size_t poseKey, size_t pointKey, const gtsam::Cal3_S2* K); void addStereoMeasurement(const gtsam::StereoPoint2& measured, const gtsam::SharedNoiseModel& model, size_t poseKey, size_t pointKey, const gtsam::Cal3_S2Stereo* K); // Constraints void addPoseConstraint(size_t poseKey, const gtsam::Pose3& p); void addPointConstraint(size_t pointKey, const gtsam::Point3& p); // Priors void addPosePrior(size_t poseKey, const gtsam::Pose3& p, const gtsam::SharedNoiseModel& model); void addPointPrior(size_t pointKey, const gtsam::Point3& p, const gtsam::SharedNoiseModel& model); void addRangeFactor(size_t poseKey, size_t pointKey, double range, const gtsam::SharedNoiseModel& model); void addOdometry(size_t poseKey1, size_t poseKey2, const gtsam::Pose3& odometry, const gtsam::SharedNoiseModel& model); visualSLAM::Values optimize(const visualSLAM::Values& initialEstimate) const; gtsam::Marginals marginals(const visualSLAM::Values& solution) const; }; class ISAM { ISAM(); ISAM(int reorderInterval); void print(string s) const; void printStats() const; void saveGraph(string s) const; visualSLAM::Values estimate() const; Matrix marginalCovariance(size_t key) const; int reorderInterval() const; int reorderCounter() const; void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues); void reorder_relinearize(); void addKey(size_t key); void setOrdering(const gtsam::Ordering& new_ordering); }; }///\namespace visualSLAM