/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Pose2SLAMExample_easy.cpp * * A 2D Pose SLAM example using the predefined typedefs in gtsam/slam/pose2SLAM.h * * @date Oct 21, 2010 * @author ydjian */ #include #include #include // pull in the Pose2 SLAM domain with all typedefs and helper functions defined #include #include using namespace std; using namespace gtsam; using namespace gtsam::pose2SLAM; int main(int argc, char** argv) { // create keys for robot positions Key x1(1), x2(2), x3(3); /* 1. create graph container and add factors to it */ Graph graph ; /* 2.a add prior */ // gaussian for prior SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin graph.addPrior(x1, prior_measurement, prior_model); // add directly to graph /* 2.b add odometry */ // general noisemodel for odometry SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); /* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/ Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) graph.addConstraint(x1, x2, odom_measurement, odom_model); graph.addConstraint(x2, x3, odom_measurement, odom_model); graph.print("full graph"); /* 3. Create the data structure to hold the initial estinmate to the solution * initialize to noisy points */ DynamicValues initial; initial.insert(x1, Pose2(0.5, 0.0, 0.2)); initial.insert(x2, Pose2(2.3, 0.1,-0.2)); initial.insert(x3, Pose2(4.1, 0.1, 0.1)); initial.print("initial estimate"); /* 4 Single Step Optimization * optimize using Levenberg-Marquardt optimization with an ordering from colamd */ DynamicValues result = optimize(graph, initial); result.print("final result"); return 0; }