/** * @file Point3.h * @brief 3D Point * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert */ // \callgraph #pragma once #include #include "Matrix.h" #include "Testable.h" namespace gtsam { /** A 3D point */ class Point3: Testable { private: double x_, y_, z_; public: Point3(): x_(0), y_(0), z_(0) {} Point3(const Point3 &p) : x_(p.x_), y_(p.y_), z_(p.z_) {} Point3(double x, double y, double z): x_(x), y_(y), z_(z) {} Point3(const Vector& v) : x_(v(0)), y_(v(1)), z_(v(2)) {} /** print with optional string */ void print(const std::string& s = "") const { std::cout << s << "(" << x_ << ", " << y_ << ", " << z_ << ")" << std::endl; } /** equals with an tolerance */ bool equals(const Point3& p, double tol = 1e-9) const; /** return DOF, dimensionality of tangent space */ size_t dim() const { return 3;} /** Given 3-dim tangent vector, create new rotation*/ Point3 exmap(const Vector& d) const { return *this + d; } /** return vectorized form (column-wise)*/ Vector vector() const { //double r[] = { x_, y_, z_ }; Vector v(3); v(0)=x_; v(1)=y_; v(2)=z_; return v; } /** get functions for x, y, z */ double x() const {return x_;} double y() const {return y_;} double z() const {return z_;} /** operators */ Point3 operator - () const { return Point3(-x_,-y_,-z_);} bool operator ==(const Point3& q) const; Point3 operator + (const Point3& q) const; Point3 operator - (const Point3& q) const; Point3 operator * (double s) const; Point3 operator / (double s) const; /** distance between two points */ double dist(const Point3& p2) const { return sqrt(pow(x()-p2.x(),2.0) + pow(y()-p2.y(),2.0) + pow(z()-p2.z(),2.0)); } /** friends */ friend Point3 cross(const Point3 &p1, const Point3 &p2); friend double dot(const Point3 &p1, const Point3 &p2); friend double norm(const Point3 &p1); private: /** Serialization function */ friend class boost::serialization::access; template void serialize(Archive & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_NVP(x_); ar & BOOST_SERIALIZATION_NVP(y_); ar & BOOST_SERIALIZATION_NVP(z_); } }; Point3 operator*(double s, const Point3& p); /** add two points, add(p,q) is same as p+q */ Point3 add (const Point3 &p, const Point3 &q); Matrix Dadd1(const Point3 &p, const Point3 &q); Matrix Dadd2(const Point3 &p, const Point3 &q); /** subtract two points, sub(p,q) is same as p-q */ Point3 sub (const Point3 &p, const Point3 &q); Matrix Dsub1(const Point3 &p, const Point3 &q); Matrix Dsub2(const Point3 &p, const Point3 &q); /** cross product */ Point3 cross(const Point3 &p, const Point3 &q); /** dot product */ double dot(const Point3 &p, const Point3 &q); /** dot product */ double norm(const Point3 &p); }