/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SelfCalibrationExample.cpp * @brief Based on VisualSLAMExample, but with unknown (yet fixed) calibration. * @author Frank Dellaert */ /* * See the detailed documentation in Visual SLAM. * The only documentation below with deal with the self-calibration. */ // For loading the data #include "visualSLAMdata.h" // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y). #include // Inference and optimization #include #include #include #include // SFM-specific factors #include #include // does calibration ! // Standard headers #include using namespace std; using namespace gtsam; /* ************************************************************************* */ int main(int argc, char* argv[]) { // Create the set of ground-truth vector points = createPoints(); vector poses = createPoses(); // Create the factor graph NonlinearFactorGraph graph; // Add a prior on pose x1. noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(Vector_(6, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1)); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw graph.push_back(PriorFactor(Symbol('x', 0), poses[0], poseNoise)); // Simulated measurements from each camera pose, adding them to the factor graph Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0); noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); for (size_t i = 0; i < poses.size(); ++i) { for (size_t j = 0; j < points.size(); ++j) { SimpleCamera camera(poses[i], K); Point2 measurement = camera.project(points[j]); // The only real difference with the Visual SLAM example is that here we use a // different factor type, that also calculates the Jacobian with respect to calibration graph.push_back(GeneralSFMFactor2(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0))); } } // Add a prior on the position of the first landmark. noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); graph.push_back(PriorFactor(Symbol('l', 0), points[0], pointNoise)); // add directly to graph // Add a prior on the calibration. noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas(Vector_(5, 500, 500, 0.1, 100, 100)); graph.push_back(PriorFactor(Symbol('K', 0), K, calNoise)); // Create the initial estimate to the solution // now including an estimate on the camera calibration parameters Values initialEstimate; initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0)); for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); for (size_t j = 0; j < points.size(); ++j) initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); /* Optimize the graph and print results */ Values result = DoglegOptimizer(graph, initialEstimate).optimize(); result.print("Final results:\n"); return 0; } /* ************************************************************************* */