/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testExpressionFactor.cpp * @date September 18, 2014 * @author Frank Dellaert * @author Paul Furgale * @brief unit tests for Block Automatic Differentiation */ #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; Point2 measured(-17, 30); SharedNoiseModel model = noiseModel::Unit::Create(2); /* ************************************************************************* */ // Leaf TEST(ExpressionFactor, leaf) { // Create some values Values values; values.insert(2, Point2(3, 5)); JacobianFactor expected( // 2, (Matrix(2, 2) << 1, 0, 0, 1), // (Vector(2) << -3, -5)); // Create leaves Point2_ p(2); // Try concise version ExpressionFactor f(model, Point2(0, 0), p); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf, 1e-9)); } /* ************************************************************************* */ // non-zero noise model TEST(ExpressionFactor, model) { // Create some values Values values; values.insert(2, Point2(3, 5)); JacobianFactor expected( // 2, (Matrix(2, 2) << 10, 0, 0, 100), // (Vector(2) << -30, -500)); // Create leaves Point2_ p(2); // Try concise version SharedNoiseModel model = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.01)); ExpressionFactor f(model, Point2(0, 0), p); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf, 1e-9)); } /* ************************************************************************* */ // Unary(Leaf)) TEST(ExpressionFactor, test) { // Create some values Values values; values.insert(2, Point3(0, 0, 1)); JacobianFactor expected( // 2, (Matrix(2, 3) << 1, 0, 0, 0, 1, 0), // (Vector(2) << -17, 30)); // Create leaves Point3_ p(2); // Try concise version ExpressionFactor f(model, measured, project(p)); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf, 1e-9)); } /* ************************************************************************* */ // Unary(Binary(Leaf,Leaf)) TEST(ExpressionFactor, test1) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); // Create old-style factor to create expected value and derivatives GenericProjectionFactor old(measured, model, 1, 2, boost::make_shared()); double expected_error = old.error(values); GaussianFactor::shared_ptr expected = old.linearize(values); // Create leaves Pose3_ x(1); Point3_ p(2); // Try concise version ExpressionFactor f2(model, measured, project(transform_to(x, p))); EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f2.dim()); boost::shared_ptr gf2 = f2.linearize(values); EXPECT( assert_equal(*expected, *gf2, 1e-9)); } /* ************************************************************************* */ // Binary(Leaf,Unary(Binary(Leaf,Leaf))) TEST(ExpressionFactor, test2) { // Create some values Values values; values.insert(1, Pose3()); values.insert(2, Point3(0, 0, 1)); values.insert(3, Cal3_S2()); // Create old-style factor to create expected value and derivatives GeneralSFMFactor2 old(measured, model, 1, 2, 3); double expected_error = old.error(values); GaussianFactor::shared_ptr expected = old.linearize(values); // Create leaves Pose3_ x(1); Point3_ p(2); Cal3_S2_ K(3); // Create expression tree Point3_ p_cam(x, &Pose3::transform_to, p); Point2_ xy_hat(PinholeCamera::project_to_camera, p_cam); Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat); // Create factor and check value, dimension, linearization ExpressionFactor f(model, measured, uv_hat); EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f.dim()); boost::shared_ptr gf = f.linearize(values); EXPECT( assert_equal(*expected, *gf, 1e-9)); // Try concise version ExpressionFactor f2(model, measured, uncalibrate(K, project(transform_to(x, p)))); EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f2.dim()); boost::shared_ptr gf2 = f2.linearize(values); EXPECT( assert_equal(*expected, *gf2, 1e-9)); TernaryExpression::Function fff = project6; // Try ternary version ExpressionFactor f3(model, measured, project3(x, p, K)); EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9); EXPECT_LONGS_EQUAL(2, f3.dim()); boost::shared_ptr gf3 = f3.linearize(values); EXPECT( assert_equal(*expected, *gf3, 1e-9)); } /* ************************************************************************* */ TEST(ExpressionFactor, compose1) { // Create expression Rot3_ R1(1), R2(2); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(1, Rot3()); values.insert(2, Rot3()); // Check unwhitenedError std::vector H(2); Vector actual = f.unwhitenedError(values, H); EXPECT( assert_equal(eye(3), H[0],1e-9)); EXPECT( assert_equal(eye(3), H[1],1e-9)); // Check linearization JacobianFactor expected(1, eye(3), 2, eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with arguments referring to the same rotation TEST(ExpressionFactor, compose2) { // Create expression Rot3_ R1(1), R2(1); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(1, Rot3()); // Check unwhitenedError std::vector H(1); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(1, H.size()); EXPECT( assert_equal(2*eye(3), H[0],1e-9)); // Check linearization JacobianFactor expected(1, 2 * eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with one arguments referring to a constant same rotation TEST(ExpressionFactor, compose3) { // Create expression Rot3_ R1(Rot3::identity()), R2(3); Rot3_ R3 = R1 * R2; // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), R3); // Create some values Values values; values.insert(3, Rot3()); // Check unwhitenedError std::vector H(1); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(1, H.size()); EXPECT( assert_equal(eye(3), H[0],1e-9)); // Check linearization JacobianFactor expected(3, eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ // Test compose with three arguments Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3, boost::optional H1, boost::optional H2, boost::optional H3) { // return dummy derivatives (not correct, but that's ok for testing here) if (H1) *H1 = eye(3); if (H2) *H2 = eye(3); if (H3) *H3 = eye(3); return R1 * (R2 * R3); } TEST(ExpressionFactor, composeTernary) { // Create expression Rot3_ A(1), B(2), C(3); Rot3_ ABC(composeThree, A, B, C); // Create factor ExpressionFactor f(noiseModel::Unit::Create(3), Rot3(), ABC); // Create some values Values values; values.insert(1, Rot3()); values.insert(2, Rot3()); values.insert(3, Rot3()); // Check unwhitenedError std::vector H(3); Vector actual = f.unwhitenedError(values, H); EXPECT_LONGS_EQUAL(3, H.size()); EXPECT( assert_equal(eye(3), H[0],1e-9)); EXPECT( assert_equal(eye(3), H[1],1e-9)); EXPECT( assert_equal(eye(3), H[2],1e-9)); // Check linearization JacobianFactor expected(1, eye(3), 2, eye(3), 3, eye(3), zero(3)); boost::shared_ptr gf = f.linearize(values); boost::shared_ptr jf = // boost::dynamic_pointer_cast(gf); EXPECT( assert_equal(expected, *jf,1e-9)); } /* ************************************************************************* */ namespace mpl = boost::mpl; #include template struct Incomplete; typedef mpl::vector MyTypes; typedef GenerateTrace::type Generated; //Incomplete incomplete; BOOST_MPL_ASSERT((boost::is_same< Matrix25, Generated::JacobianTA >)); BOOST_MPL_ASSERT((boost::is_same< Matrix2, Generated::Jacobian2T >)); Generated generated; typedef mpl::vector1 OneType; typedef mpl::pop_front::type Empty; typedef mpl::pop_front::type Bad; //typedef ProtoTrace UnaryTrace; //BOOST_MPL_ASSERT((boost::is_same< UnaryTrace::A, Point3 >)); #include #include #include //#include typedef struct { } Expected0; BOOST_MPL_ASSERT((boost::is_same< Expected0, Expected0 >)); /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */