import gtsam.*; % Test GTSAM covariances on a graph with betweenFactors % Authors: Luca Carlone, David Jensen % Date: 2014/4/6 clc clear all close all %% Configuration useRealData = 0; % controls whether or not to use the Real data (is available) as the ground truth traj includeIMUFactors = 1; % if true, IMU type 1 Factors will be generated for the random trajectory % includeCameraFactors = 0; % not implemented yet trajectoryLength = 2; % length of the ground truth trajectory %% Imu metadata epsBias = 1e-20; zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1)); IMU_metadata.AccelerometerSigma = 1e-5; IMU_metadata.GyroscopeSigma = 1e-7; IMU_metadata.IntegrationSigma = 1e-10; IMU_metadata.BiasAccelerometerSigma = epsBias; IMU_metadata.BiasGyroscopeSigma = epsBias; IMU_metadata.BiasAccOmegaInit = epsBias; noiseVel = noiseModel.Isotropic.Sigma(3, 0.1); noiseBias = noiseModel.Isotropic.Sigma(6, epsBias); %% Between metadata if useRealData == 1 sigma_ang = 1e-4; sigma_cart = 40; else sigma_ang = 1e-2; sigma_cart = 0.1; end noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart]; noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose); %% Create ground truth trajectory gtValues = Values; gtGraph = NonlinearFactorGraph; if useRealData == 1 % % % %% Create a ground truth trajectory from Real data (if available) % % % fprintf('\nUsing real data as ground truth\n'); % % % gtScenario2 = load('truth_scen2.mat', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading'); % Time: [4201x1 double] % Lat: [4201x1 double] % Lon: [4201x1 double] % Alt: [4201x1 double] % VEast: [4201x1 double] % VNorth: [4201x1 double] % VUp: [4201x1 double] % Roll: [4201x1 double] % Pitch: [4201x1 double] % Heading % % % % % % % Add first pose % % % currentPoseKey = symbol('x', 0); % % % initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]); % % % initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)]; % % % currentPose = Pose3.Expmap([initialRotation; initialPosition]); % initial pose % % % gtValues.insert(currentPoseKey, currentPose); % % % gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose)); % % % prevPose = currentPose; % % % % % % % Limit the trajectory length % % % trajectoryLength = min([length(gtScenario2.Lat) trajectoryLength]); % % % % % % for i=2:trajectoryLength % % % currentPoseKey = symbol('x', i-1); % % % gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(i); gtScenario2.Lon(i); gtScenario2.Alt(i)]); % % % gtRotation = [gtScenario2.Roll(i); gtScenario2.Pitch(i); gtScenario2.Heading(i)]; % % % currentPose = Pose3.Expmap([gtRotation; gtECEF]); % % % % % % % Generate measurements as the current pose measured in the frame of % % % % the previous pose % % % deltaPose = prevPose.between(currentPose); % % % gtDeltaMatrix(i-1,:) = Pose3.Logmap(deltaPose); % % % prevPose = currentPose; % % % % % % % Add values % % % gtValues.insert(currentPoseKey, currentPose); % % % % % % % Add the factor to the factor graph % % % gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose)); % % % end else %% Create a random trajectory as ground truth currentVel = [0 0 0]; % initial velocity (used to generate IMU measurements) currentPose = Pose3; % initial pose % initial pose deltaT = 1.0; % amount of time between IMU measurements g = [0; 0; 0]; % gravity omegaCoriolis = [0; 0; 0]; % Coriolis unsmooth_DP = 0.5; % controls smoothness on translation norm unsmooth_DR = 0.1; % controls smoothness on rotation norm fprintf('\nCreating a random ground truth trajectory\n'); %% Add priors currentPoseKey = symbol('x', 0); gtValues.insert(currentPoseKey, currentPose); gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose)); if includeIMUFactors == 1 currentVelKey = symbol('v', 0); currentBiasKey = symbol('b', 0); gtValues.insert(currentVelKey, LieVector(vel')); gtValues.insert(currentBiasKey, zeroBias); gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(vel'), noiseVel)); gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, noiseBias)); end for i=1:trajectoryLength currentPoseKey = symbol('x', i); gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5 gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad) gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition]; measurements.deltaPose = Pose3.Expmap(gtDeltaMatrix(i,:)'); % "Deduce" ground truth measurements % deltaPose are the gt measurements - save them in some structure currentPose = currentPose.compose(deltaPose); gtValues.insert(currentPoseKey, currentPose); % Add the factors to the factor graph gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose)); % Add IMU factors if includeIMUFactors == 1 currentVelKey = symbol('v', i); % not used if includeIMUFactors is false currentBiasKey = symbol('b', i); % not used if includeIMUFactors is false % create accel and gyro measurements based on measurements.imu.gyro = gtDeltaMatrix(i, 1:3)./deltaT; % acc = (deltaPosition - initialVel * dT) * (2/dt^2) measurements.imu.accel = (gtDeltaMatrix(i, 4:6) - currentVel.*deltaT).*(2/(deltaT*deltaT)); % update current velocity currentVel = gtDeltaMatrix(i,4:6)./deltaT; imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ... zeroBias, ... IMU_metadata.AccelerometerSigma.^2 * eye(3), ... IMU_metadata.GyroscopeSigma.^2 * eye(3), ... IMU_metadata.IntegrationSigma.^2 * eye(3)); imuMeasurement.integrateMeasurement(accel', gyro', deltaT); gtGraph.add(ImuFactor( ... currentPoseKey-1, currentVelKey-1, ... currentPoseKey, currentVelKey, ... currentBiasKey-1, imuMeasurement, g, omegaCoriolis)); gtGraph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, zeroBias, ... noiseModel.Isotropic.Sigma(6, epsBias))); gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, ... noiseModel.Isotropic.Sigma(6, epsBias))); gtValues.insert(currentVelKey, LieVector(vel')); gtValues.insert(currentBiasKey, zeroBias); end end end gtPoses = Values; for i=0:trajectoryLength currentPoseKey = symbol('x', i); currentPose = gtValues.at(currentPoseKey); gtPoses.insert(currentPoseKey, currentPose); end figure(1) hold on; plot3DTrajectory(gtPoses, '-r', [], 1, Marginals(gtGraph, gtPoses)); axis equal numMonteCarloRuns = 100; for k=1:numMonteCarloRuns fprintf('Monte Carlo Run %d.\n', k'); % create a new graph graph = NonlinearFactorGraph; % noisy prior if useRealData == 1 currentPoseKey = symbol('x', 0); initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]); initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)]; initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose)); else currentPoseKey = symbol('x', 0); noisyDelta = noiseVectorPose .* randn(6,1); initialPose = Pose3.Expmap(noisyDelta); graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose)); end for i=1:size(gtDeltaMatrix,1) currentPoseKey = symbol('x', i); % for each measurement: add noise and add to graph noisyDelta = gtDeltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1)); noisyDeltaPose = Pose3.Expmap(noisyDelta); % Add the factors to the factor graph graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose)); end % optimize optimizer = GaussNewtonOptimizer(graph, gtValues); estimate = optimizer.optimize(); figure(1) plot3DTrajectory(estimate, '-b'); marginals = Marginals(graph, estimate); % for each pose in the trajectory for i=1:size(gtDeltaMatrix,1)+1 % compute estimation errors currentPoseKey = symbol('x', i-1); gtPosition = gtValues.at(currentPoseKey).translation.vector; estPosition = estimate.at(currentPoseKey).translation.vector; estR = estimate.at(currentPoseKey).rotation.matrix; errPosition = estPosition - gtPosition; % compute covariances: cov = marginals.marginalCovariance(currentPoseKey); covPosition = estR * cov(4:6,4:6) * estR'; % compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances NEES(k,i) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof end figure(2) hold on plot(NEES(k,:),'-b','LineWidth',1.5) end %% ANEES = mean(NEES); plot(ANEES,'-r','LineWidth',2) plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof box on set(gca,'Fontsize',16) title('NEES and ANEES'); %% figure(1) box on set(gca,'Fontsize',16) title('Ground truth and estimates for each MC runs'); %% Let us compute statistics on the overall NEES n = 3; % position vector dimension N = numMonteCarloRuns; % number of runs alpha = 0.01; % confidence level % mean_value = n*N; % mean value of the Chi-square distribution % (we divide by n * N and for this reason we expect ANEES around 1) r1 = chi2inv(alpha, n * N) / (n * N); r2 = chi2inv(1-alpha, n * N) / (n * N); % output here fprintf(1, 'r1 = %g\n', r1); fprintf(1, 'r2 = %g\n', r2); figure(3) hold on plot(ANEES/n,'-b','LineWidth',2) plot(ones(size(ANEES,2),1),'r-'); plot(r1*ones(size(ANEES,2),1),'k-.'); plot(r2*ones(size(ANEES,2),1),'k-.'); box on set(gca,'Fontsize',16) title('NEES normalized by dof VS bounds'); %% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4) % the nees for a single experiment (i) is defined as % NEES_i = xtilda' * inv(P) * xtilda, % where xtilda in R^n is the estimation % error, and P is the covariance estimated by the approach we want to test % % Average NEES. Given N Monte Carlo simulations, i=1,...,N, the average % NEES is: % ANEES = sum(NEES_i)/N % The quantity N*ANEES is distributed according to a Chi-square % distribution with N*n degrees of freedom. % % For the single run case, N=1, therefore NEES = ANEES is distributed % according to a chi-square distribution with n degrees of freedom (e.g. n=3 % if we are testing a position estimate) % Therefore its mean should be n (difficult to see from a single run) % and, with probability alpha, it should hold: % % NEES in [r1, r2] % % where r1 and r2 are built from the Chi-square distribution