/* * graph-inl.h * * Created on: Jan 11, 2010 * Author: nikai * Description: Graph algorithm using boost library */ #pragma once #include #include #include #include #include using namespace std; #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) namespace gtsam { /* ************************************************************************* */ /** * type definitions */ typedef boost::adjacency_list< boost::vecS, boost::vecS, boost::undirectedS, boost::property, boost::property > SDGraph; typedef boost::graph_traits::vertex_descriptor BoostVertex; typedef boost::graph_traits::vertex_iterator BoostVertexIterator; typedef boost::adjacency_list< boost::vecS, boost::vecS, boost::directedS, boost::property > SGraph; typedef boost::graph_traits::vertex_descriptor SVertex; /* ************************************************************************* */ /** * Convert the factor graph to a boost undirected graph */ template SDGraph toBoostGraph(const G& graph) { // convert the factor graph to boost graph SDGraph g(0); map key2vertex; BoostVertex v1, v2; BOOST_FOREACH(F factor, graph) { if (factor->keys().size() > 2) throw(invalid_argument("toBoostGraph: only support factors with at most two keys")); if (factor->keys().size() == 1) continue; string key1 = factor->keys().front(); string key2 = factor->keys().back(); if (key2vertex.find(key1) == key2vertex.end()) { v1 = add_vertex(key1, g); key2vertex.insert(make_pair(key1, v1)); } else v1 = key2vertex[key1]; if (key2vertex.find(key2) == key2vertex.end()) { v2 = add_vertex(key2, g); key2vertex.insert(make_pair(key2, v2)); } else v2 = key2vertex[key2]; boost::property edge_property(1.0); // assume constant edge weight here boost::add_edge(v1, v2, edge_property, g); } return g; } /* ************************************************************************* */ /** * build the graph corresponding to the predecessor map. Excute action for each edge. */ template boost::tuple > predecessorMap2Graph(const map& p_map) { G g(0); map key2vertex; V v1, v2, root; string child, parent; bool foundRoot = false; FOREACH_PAIR(child, parent, p_map) { if (key2vertex.find(child) == key2vertex.end()) { v1 = add_vertex(child, g); key2vertex.insert(make_pair(child, v1)); } else v1 = key2vertex[child]; if (key2vertex.find(parent) == key2vertex.end()) { v2 = add_vertex(parent, g); key2vertex.insert(make_pair(parent, v2)); } else v2 = key2vertex[parent]; if (child.compare(parent) == 0) { root = v1; foundRoot = true; } else boost::add_edge(v2, v1, g); // edge is from parent to child } if (!foundRoot) throw invalid_argument("predecessorMap2Graph: invalid predecessor map!"); return boost::tuple >(g, root, key2vertex); } /* ************************************************************************* */ /** * Visit each edge and compose the poses */ template class compose_key_visitor : public boost::default_bfs_visitor { public: compose_key_visitor(boost::shared_ptr config_in) { config = config_in; } template void tree_edge(Edge edge, const Graph& g) const { string key_from = boost::get(boost::vertex_name, g, boost::source(edge, g)); string key_to = boost::get(boost::vertex_name, g, boost::target(edge, g)); Pose relativePose = boost::get(boost::edge_weight, g, edge); config->insert(key_to, compose(relativePose, config->get(key_from))); } private: boost::shared_ptr config; }; /* ************************************************************************* */ /** * Compose the poses by following the chain sepcified by the spanning tree */ template boost::shared_ptr composePoses(const G& graph, const map& tree, const Pose& rootPose) { //TODO: change edge_weight_t to edge_pose_t typedef typename boost::adjacency_list< boost::vecS, boost::vecS, boost::directedS, boost::property, boost::property > PoseGraph; typedef typename boost::graph_traits::vertex_descriptor PoseVertex; typedef typename boost::graph_traits::edge_descriptor PoseEdge; PoseGraph g; PoseVertex root; map key2vertex; boost::tie(g, root, key2vertex) = predecessorMap2Graph(tree); // attach the relative poses to the edges PoseEdge edge1, edge2; bool found1, found2; BOOST_FOREACH(typename G::sharedFactor nl_factor, graph) { if (nl_factor->keys().size() > 2) throw invalid_argument("composePoses: only support factors with at most two keys"); // e.g. in pose2graph, nonlinear factor needs to be converted to pose2factor boost::shared_ptr factor = boost::dynamic_pointer_cast(nl_factor); if (!factor) continue; PoseVertex v_from = key2vertex.find(factor->keys().front())->second; PoseVertex v_to = key2vertex.find(factor->keys().back())->second; Pose measured = factor->measured(); tie(edge1, found1) = boost::edge(v_from, v_to, g); tie(edge2, found2) = boost::edge(v_to, v_from, g); if (found1 && found2) throw invalid_argument ("composePoses: invalid spanning tree"); if (!found1 && !found2) continue; if (found1) boost::put(boost::edge_weight, g, edge1, measured); else if (found2) boost::put(boost::edge_weight, g, edge2, inverse(measured)); } // compose poses boost::shared_ptr config(new Config); config->insert(boost::get(boost::vertex_name, g, root), rootPose); compose_key_visitor vis(config); boost::breadth_first_search(g, root, boost::visitor(vis)); return config; } /* ************************************************************************* */ }