/** * GTSAM Wrap Module Definition * * These are the current classes available through the matlab toolbox interface, * add more functions/classes as they are available. * * Requirements: * Classes must start with an uppercase letter * Only one Method/Constructor per line * Methods can return * - Eigen types: Matrix, Vector * - C/C++ basic types: string, bool, size_t, int, double, char * - void * - Any class with which be copied with boost::make_shared() * - boost::shared_ptr of any object type * Limitations on methods * - Parsing does not support overloading * - There can only be one method with a given name * Arguments to functions any of * - Eigen types: Matrix, Vector * - Eigen types and classes as an optionally const reference * - C/C++ basic types: string, bool, size_t, int, double * - Any class with which be copied with boost::make_shared() (except Eigen) * - boost::shared_ptr of any object type (except Eigen) * Comments can use either C++ or C style, with multiple lines * Namespace definitions * - Names of namespaces must start with a lowercase letter * - start a namespace with "namespace {" * - end a namespace with exactly "}///\namespace [namespace_name]", optionally adding the name of the namespace * - This ending is not C++ standard, and must contain "}///\namespace" to parse * - Namespaces can be nested * Namespace usage * - Namespaces can be specified for classes in arguments and return values * - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName" * Methods must start with a lowercase letter * Static methods must start with a letter (upper or lowercase) and use the "static" keyword * Includes in C++ wrappers * - By default, the include will be <[classname].h> * - All namespaces must have angle brackets: * - To override, add a full include statement just before the class statement * - An override include can be added for a namespace by placing it just before the namespace statement * - Both classes and namespace accept exactly one namespace * Overriding type dependency checks * - If you are using a class 'OtherClass' not wrapped in this definition file, add "class OtherClass;" to avoid a dependency error * - Limitation: this only works if the class does not need a namespace specification */ /** * Status: * - TODO: global functions * - TODO: default values for arguments * - TODO: overloaded functions * - TODO: signatures for constructors can be ambiguous if two types have the same first letter * - TODO: Handle gtsam::Rot3M conversions to quaternions */ // Everything is in the gtsam namespace, so we avoid copying everything in //using namespace gtsam; namespace gtsam { //************************************************************************* // base //************************************************************************* //************************************************************************* // geometry //************************************************************************* class Point2 { Point2(); Point2(double x, double y); static gtsam::Point2 Expmap(Vector v); static Vector Logmap(const gtsam::Point2& p); void print(string s) const; double x(); double y(); Vector localCoordinates(const gtsam::Point2& p); gtsam::Point2 compose(const gtsam::Point2& p2); gtsam::Point2 between(const gtsam::Point2& p2); gtsam::Point2 retract(Vector v); }; class Point3 { Point3(); Point3(double x, double y, double z); Point3(Vector v); static gtsam::Point3 Expmap(Vector v); static Vector Logmap(const gtsam::Point3& p); void print(string s) const; bool equals(const gtsam::Point3& p, double tol); Vector vector() const; double x(); double y(); double z(); Vector localCoordinates(const gtsam::Point3& p); gtsam::Point3 retract(Vector v); gtsam::Point3 compose(const gtsam::Point3& p2); gtsam::Point3 between(const gtsam::Point3& p2); }; class Rot2 { Rot2(); Rot2(double theta); static gtsam::Rot2 Expmap(Vector v); static Vector Logmap(const gtsam::Rot2& p); static gtsam::Rot2 fromAngle(double theta); static gtsam::Rot2 fromDegrees(double theta); static gtsam::Rot2 fromCosSin(double c, double s); static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative static gtsam::Rot2 atan2(double y, double x); void print(string s) const; bool equals(const gtsam::Rot2& rot, double tol) const; double theta() const; double degrees() const; double c() const; double s() const; Vector localCoordinates(const gtsam::Rot2& p); gtsam::Rot2 retract(Vector v); gtsam::Rot2 compose(const gtsam::Rot2& p2); gtsam::Rot2 between(const gtsam::Rot2& p2); }; class Rot3 { Rot3(); Rot3(Matrix R); static gtsam::Rot3 Rx(double t); static gtsam::Rot3 Ry(double t); static gtsam::Rot3 Rz(double t); // static gtsam::Rot3 RzRyRx(double x, double y, double z); // FIXME: overloaded functions don't work yet static gtsam::Rot3 RzRyRx(Vector xyz); static gtsam::Rot3 yaw (double t); // positive yaw is to right (as in aircraft heading) static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude) static gtsam::Rot3 roll (double t); // positive roll is to right (increasing yaw in aircraft) static gtsam::Rot3 ypr(double y, double p, double r); static gtsam::Rot3 quaternion(double w, double x, double y, double z); static gtsam::Rot3 rodriguez(Vector v); void print(string s) const; bool equals(const gtsam::Rot3& rot, double tol) const; static gtsam::Rot3 identity(); gtsam::Rot3 compose(const gtsam::Rot3& p2) const; gtsam::Rot3 inverse() const; gtsam::Rot3 between(const gtsam::Rot3& p2) const; gtsam::Point3 rotate(const gtsam::Point3& p) const; gtsam::Point3 unrotate(const gtsam::Point3& p) const; gtsam::Rot3 retractCayley(Vector v) const; gtsam::Rot3 retract(Vector v) const; Vector localCoordinates(const gtsam::Rot3& p) const; static gtsam::Rot3 Expmap(Vector v); static Vector Logmap(const gtsam::Rot3& p); Matrix matrix() const; Matrix transpose() const; gtsam::Point3 column(int index) const; Vector xyz() const; Vector ypr() const; Vector rpy() const; double roll() const; double pitch() const; double yaw() const; // Vector toQuaternion() const; // FIXME: Can't cast to Vector properly }; class Pose2 { Pose2(); Pose2(double x, double y, double theta); Pose2(double theta, const gtsam::Point2& t); Pose2(const gtsam::Rot2& r, const gtsam::Point2& t); Pose2(Vector v); static gtsam::Pose2 Expmap(Vector v); static Vector Logmap(const gtsam::Pose2& p); void print(string s) const; bool equals(const gtsam::Pose2& pose, double tol) const; double x() const; double y() const; double theta() const; int dim() const; Vector localCoordinates(const gtsam::Pose2& p); gtsam::Pose2 retract(Vector v); gtsam::Pose2 compose(const gtsam::Pose2& p2); gtsam::Pose2 between(const gtsam::Pose2& p2); gtsam::Rot2 bearing(const gtsam::Point2& point); double range(const gtsam::Point2& point); gtsam::Point2 translation() const; gtsam::Rot2 rotation() const; }; class Pose3 { Pose3(); Pose3(const gtsam::Rot3& r, const gtsam::Point3& t); Pose3(Matrix t); Pose3(const gtsam::Pose2& pose2); static gtsam::Pose3 Expmap(Vector v); static Vector Logmap(const gtsam::Pose3& p); void print(string s) const; bool equals(const gtsam::Pose3& pose, double tol) const; double x() const; double y() const; double z() const; Matrix matrix() const; Matrix adjointMap() const; gtsam::Pose3 compose(const gtsam::Pose3& p2); gtsam::Pose3 between(const gtsam::Pose3& p2); gtsam::Pose3 retract(Vector v); gtsam::Pose3 retractFirstOrder(Vector v); Vector localCoordinates(const gtsam::Pose3& T2) const; gtsam::Point3 translation() const; gtsam::Rot3 rotation() const; }; class CalibratedCamera { CalibratedCamera(); CalibratedCamera(const gtsam::Pose3& pose); CalibratedCamera(const Vector& v); void print(string s) const; bool equals(const gtsam::CalibratedCamera& camera, double tol) const; gtsam::Pose3 pose() const; gtsam::CalibratedCamera compose(const gtsam::CalibratedCamera& c) const; gtsam::CalibratedCamera inverse() const; gtsam::CalibratedCamera level(const gtsam::Pose2& pose2, double height); gtsam::CalibratedCamera retract(const Vector& d) const; Vector localCoordinates(const gtsam::CalibratedCamera& T2) const; gtsam::Point2 project(const gtsam::Point3& point) const; static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint); }; //************************************************************************* // inference //************************************************************************* //************************************************************************* // linear //************************************************************************* class SharedGaussian { SharedGaussian(Matrix covariance); void print(string s) const; }; class SharedDiagonal { SharedDiagonal(Vector sigmas); void print(string s) const; Vector sample() const; }; class SharedNoiseModel { static gtsam::SharedNoiseModel Sigmas(Vector sigmas); static gtsam::SharedNoiseModel Sigma(size_t dim, double sigma); static gtsam::SharedNoiseModel Precisions(Vector precisions); static gtsam::SharedNoiseModel Precision(size_t dim, double precision); static gtsam::SharedNoiseModel Unit(size_t dim); static gtsam::SharedNoiseModel SqrtInformation(Matrix R); static gtsam::SharedNoiseModel Covariance(Matrix covariance); void print(string s) const; }; class VectorValues { VectorValues(); VectorValues(int nVars, int varDim); void print(string s) const; bool equals(const gtsam::VectorValues& expected, double tol) const; int size() const; void insert(int j, Vector value); }; class GaussianConditional { GaussianConditional(int key, Vector d, Matrix R, Vector sigmas); GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S, Vector sigmas); GaussianConditional(int key, Vector d, Matrix R, int name1, Matrix S, int name2, Matrix T, Vector sigmas); void print(string s) const; bool equals(const gtsam::GaussianConditional &cg, double tol) const; }; class GaussianDensity { GaussianDensity(int key, Vector d, Matrix R, Vector sigmas); void print(string s) const; Vector mean() const; Matrix information() const; Matrix covariance() const; }; class GaussianBayesNet { GaussianBayesNet(); void print(string s) const; bool equals(const gtsam::GaussianBayesNet& cbn, double tol) const; void push_back(gtsam::GaussianConditional* conditional); void push_front(gtsam::GaussianConditional* conditional); }; class GaussianFactor { void print(string s) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; double error(const gtsam::VectorValues& c) const; }; class JacobianFactor { JacobianFactor(); JacobianFactor(Vector b_in); JacobianFactor(int i1, Matrix A1, Vector b, const gtsam::SharedDiagonal& model); JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, Vector b, const gtsam::SharedDiagonal& model); JacobianFactor(int i1, Matrix A1, int i2, Matrix A2, int i3, Matrix A3, Vector b, const gtsam::SharedDiagonal& model); void print(string s) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; bool empty() const; Vector getb() const; double error(const gtsam::VectorValues& c) const; gtsam::GaussianConditional* eliminateFirst(); }; class HessianFactor { HessianFactor(const gtsam::HessianFactor& gf); HessianFactor(); HessianFactor(int j, Matrix G, Vector g, double f); HessianFactor(int j, Vector mu, Matrix Sigma); HessianFactor(int j1, int j2, Matrix G11, Matrix G12, Vector g1, Matrix G22, Vector g2, double f); HessianFactor(int j1, int j2, int j3, Matrix G11, Matrix G12, Matrix G13, Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3, double f); HessianFactor(const gtsam::GaussianConditional& cg); HessianFactor(const gtsam::GaussianFactor& factor); void print(string s) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; double error(const gtsam::VectorValues& c) const; }; class GaussianFactorGraph { GaussianFactorGraph(); GaussianFactorGraph(const gtsam::GaussianBayesNet& CBN); // From FactorGraph void push_back(gtsam::GaussianFactor* factor); void print(string s) const; bool equals(const gtsam::GaussianFactorGraph& lfgraph, double tol) const; int size() const; // Building the graph void add(gtsam::JacobianFactor* factor); void add(Vector b); void add(int key1, Matrix A1, Vector b, const gtsam::SharedDiagonal& model); void add(int key1, Matrix A1, int key2, Matrix A2, Vector b, const gtsam::SharedDiagonal& model); void add(int key1, Matrix A1, int key2, Matrix A2, int key3, Matrix A3, Vector b, const gtsam::SharedDiagonal& model); void add(gtsam::HessianFactor* factor); // error and probability double error(const gtsam::VectorValues& c) const; double probPrime(const gtsam::VectorValues& c) const; // combining static gtsam::GaussianFactorGraph combine2(const gtsam::GaussianFactorGraph& lfg1, const gtsam::GaussianFactorGraph& lfg2); void combine(const gtsam::GaussianFactorGraph& lfg); // Conversion to matrices Matrix sparseJacobian_() const; Matrix denseJacobian() const; Matrix denseHessian() const; }; class GaussianSequentialSolver { GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph, bool useQR); gtsam::GaussianBayesNet* eliminate() const; gtsam::VectorValues* optimize() const; gtsam::GaussianFactor* marginalFactor(int j) const; Matrix marginalCovariance(int j) const; }; class KalmanFilter { KalmanFilter(size_t n); gtsam::GaussianDensity* init(Vector x0, const gtsam::SharedDiagonal& P0); gtsam::GaussianDensity* init(Vector x0, Matrix P0); void print(string s) const; static int step(gtsam::GaussianDensity* p); gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, Matrix F, Matrix B, Vector u, const gtsam::SharedDiagonal& modelQ); gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, Matrix F, Matrix B, Vector u, Matrix Q); gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, Matrix A0, Matrix A1, Vector b, const gtsam::SharedDiagonal& model); gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, Matrix H, Vector z, const gtsam::SharedDiagonal& model); gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, Matrix H, Vector z, Matrix Q); }; //************************************************************************* // nonlinear //************************************************************************* class Ordering { Ordering(); void print(string s) const; bool equals(const gtsam::Ordering& ord, double tol) const; void push_back(size_t key); }; class NonlinearOptimizationParameters { NonlinearOptimizationParameters(double absDecrease, double relDecrease, double sumError, int iIters, double lambda, double lambdaFactor); void print(string s) const; static gtsam::NonlinearOptimizationParameters* newDecreaseThresholds(double absDecrease, double relDecrease); }; }///\namespace gtsam //************************************************************************* // planarSLAM //************************************************************************* #include namespace planarSLAM { class Values { Values(); void print(string s) const; gtsam::Pose2 pose(int key) const; gtsam::Point2 point(int key) const; void insertPose(int key, const gtsam::Pose2& pose); void insertPoint(int key, const gtsam::Point2& point); }; class Graph { Graph(); void print(string s) const; double error(const planarSLAM::Values& values) const; gtsam::Ordering* orderingCOLAMD(const planarSLAM::Values& values) const; gtsam::GaussianFactorGraph* linearize(const planarSLAM::Values& values, const gtsam::Ordering& ordering) const; void addPrior(int key, const gtsam::Pose2& pose, const gtsam::SharedNoiseModel& noiseModel); void addPoseConstraint(int key, const gtsam::Pose2& pose); void addOdometry(int key1, int key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel); void addBearing(int poseKey, int pointKey, const gtsam::Rot2& bearing, const gtsam::SharedNoiseModel& noiseModel); void addRange(int poseKey, int pointKey, double range, const gtsam::SharedNoiseModel& noiseModel); void addBearingRange(int poseKey, int pointKey, const gtsam::Rot2& bearing, double range, const gtsam::SharedNoiseModel& noiseModel); planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate); }; class Odometry { Odometry(int key1, int key2, const gtsam::Pose2& measured, const gtsam::SharedNoiseModel& model); void print(string s) const; gtsam::GaussianFactor* linearize(const planarSLAM::Values& center, const gtsam::Ordering& ordering) const; }; class Optimizer { Optimizer(planarSLAM::Graph* graph, planarSLAM::Values* values, gtsam::Ordering* ordering, gtsam::NonlinearOptimizationParameters* parameters); void print(string s) const; }; }///\namespace planarSLAM //************************************************************************* // gtsam::Pose2SLAM //************************************************************************* #include namespace pose2SLAM { class Values { Values(); void print(string s) const; void insertPose(int key, const gtsam::Pose2& pose); gtsam::Pose2 pose(int i); }; class Graph { Graph(); void print(string s) const; double error(const pose2SLAM::Values& values) const; gtsam::Ordering* orderingCOLAMD(const pose2SLAM::Values& values) const; gtsam::GaussianFactorGraph* linearize(const pose2SLAM::Values& values, const gtsam::Ordering& ordering) const; void addPrior(int key, const gtsam::Pose2& pose, const gtsam::SharedNoiseModel& noiseModel); void addPoseConstraint(int key, const gtsam::Pose2& pose); void addOdometry(int key1, int key2, const gtsam::Pose2& odometry, const gtsam::SharedNoiseModel& noiseModel); pose2SLAM::Values optimize(const pose2SLAM::Values& initialEstimate); }; class Optimizer { Optimizer(pose2SLAM::Graph* graph, pose2SLAM::Values* values, gtsam::Ordering* ordering, gtsam::NonlinearOptimizationParameters* parameters); void print(string s) const; }; }///\namespace pose2SLAM //************************************************************************* // Simulated2D //************************************************************************* #include namespace simulated2D { class Values { Values(); void insertPose(int i, const gtsam::Point2& p); void insertPoint(int j, const gtsam::Point2& p); int nrPoses() const; int nrPoints() const; gtsam::Point2 pose(int i); gtsam::Point2 point(int j); }; class Graph { Graph(); }; // TODO: add factors, etc. }///\namespace simulated2D // Simulated2DOriented Example Domain #include namespace simulated2DOriented { class Values { Values(); void insertPose(int i, const gtsam::Pose2& p); void insertPoint(int j, const gtsam::Point2& p); int nrPoses() const; int nrPoints() const; gtsam::Pose2 pose(int i); gtsam::Point2 point(int j); }; class Graph { Graph(); }; // TODO: add factors, etc. }///\namespace simulated2DOriented //// These are considered to be broken and will be added back as they start working //// It's assumed that there have been interface changes that might break this // //class Ordering{ // Ordering(string key); // void print(string s) const; // bool equals(const Ordering& ord, double tol) const; // Ordering subtract(const Ordering& keys) const; // void unique (); // void reverse (); // void push_back(string s); //}; // //class GaussianFactorSet { // GaussianFactorSet(); // void push_back(GaussianFactor* factor); //}; // //class Simulated2DPosePrior { // Simulated2DPosePrior(Point2& mu, const SharedDiagonal& model, int i); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class Simulated2DOrientedPosePrior { // Simulated2DOrientedPosePrior(Pose2& mu, const SharedDiagonal& model, int i); // void print(string s) const; // double error(const Simulated2DOrientedValues& c) const; //}; // //class Simulated2DPointPrior { // Simulated2DPointPrior(Point2& mu, const SharedDiagonal& model, int i); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class Simulated2DOdometry { // Simulated2DOdometry(Point2& mu, const SharedDiagonal& model, int i1, int i2); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class Simulated2DOrientedOdometry { // Simulated2DOrientedOdometry(Pose2& mu, const SharedDiagonal& model, int i1, int i2); // void print(string s) const; // double error(const Simulated2DOrientedValues& c) const; //}; // //class Simulated2DMeasurement { // Simulated2DMeasurement(Point2& mu, const SharedDiagonal& model, int i, int j); // void print(string s) const; // double error(const Simulated2DValues& c) const; //}; // //class GaussianFactor { // GaussianFactor(string key1, // Matrix A1, // Vector b_in, // const SharedDiagonal& model); // GaussianFactor(string key1, // Matrix A1, // string key2, // Matrix A2, // Vector b_in, // const SharedDiagonal& model); // GaussianFactor(string key1, // Matrix A1, // string key2, // Matrix A2, // string key3, // Matrix A3, // Vector b_in, // const SharedDiagonal& model); // bool involves(string key) const; // Matrix getA(string key) const; // pair matrix(const Ordering& ordering) const; // pair eliminate(string key) const; //}; // //class GaussianFactorGraph { // GaussianConditional* eliminateOne(string key); // GaussianBayesNet* eliminate_(const Ordering& ordering); // VectorValues* optimize_(const Ordering& ordering); // pair matrix(const Ordering& ordering) const; // VectorValues* steepestDescent_(const VectorValues& x0) const; // VectorValues* conjugateGradientDescent_(const VectorValues& x0) const; //}; // //class gtsam::Pose2Values{ // Pose2Values(); // Pose2 get(string key) const; // void insert(string name, const gtsam::Pose2& val); // void print(string s) const; // void clear(); // int size(); //}; // //class gtsam::Pose2Factor { // Pose2Factor(string key1, string key2, // const gtsam::Pose2& measured, Matrix measurement_covariance); // void print(string name) const; // double error(const gtsam::Pose2Values& c) const; // size_t size() const; // GaussianFactor* linearize(const gtsam::Pose2Values& config) const; //}; // //class gtsam::pose2SLAM::Graph{ // pose2SLAM::Graph(); // void print(string s) const; // GaussianFactorGraph* linearize_(const gtsam::Pose2Values& config) const; // void push_back(Pose2Factor* factor); //}; // //class SymbolicFactor{ // SymbolicFactor(const Ordering& keys); // void print(string s) const; //}; // //class Simulated2DPosePrior { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Simulated2DOrientedPosePrior { // GaussianFactor* linearize(const Simulated2DOrientedValues& config) const; //}; // //class Simulated2DPointPrior { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Simulated2DOdometry { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class Simulated2DOrientedOdometry { // GaussianFactor* linearize(const Simulated2DOrientedValues& config) const; //}; // //class Simulated2DMeasurement { // GaussianFactor* linearize(const Simulated2DValues& config) const; //}; // //class gtsam::Pose2SLAMOptimizer { // Pose2SLAMOptimizer(string dataset_name); // void print(string s) const; // void update(Vector x) const; // Vector optimize() const; // double error() const; // Matrix a1() const; // Matrix a2() const; // Vector b1() const; // Vector b2() const; //};