%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert % @author Chris Beall %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have full odometry for measurements % - The robot is on a grid, moving 2 meters each step %% Create keys for variables x1 = 1; x2 = 2; x3 = 3; %% Create graph container and add factors to it graph = pose2SLAMGraph; %% Add prior % gaussian for prior prior_model = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); prior_measurement = gtsamPose2(0.0, 0.0, 0.0); % prior at origin graph.addPrior(x1, prior_measurement, prior_model); % add directly to graph %% Add odometry % general noisemodel for odometry odom_model = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); odom_measurement = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) graph.addOdometry(x1, x2, odom_measurement, odom_model); graph.addOdometry(x2, x3, odom_measurement, odom_model); %% Add measurements % general noisemodel for measurements meas_model = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); % print graph.print('full graph'); %% Initialize to noisy points initialEstimate = pose2SLAMValues; initialEstimate.insertPose(x1, gtsamPose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(x2, gtsamPose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(x3, gtsamPose2(4.1, 0.1, 0.1)); initialEstimate.print('initial estimate'); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate); result.print('final result');