/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testNonlinearFactorGraph.cpp * @brief Unit tests for Non-Linear Factor Graph * @brief testNonlinearFactorGraph * @author Carlos Nieto * @author Christian Potthast */ /*STL/C++*/ #include using namespace std; #include #include using namespace boost::assign; #include #include #include #include #include #include using namespace gtsam; using namespace example; Key kx(size_t i) { return Symbol('x',i); } Key kl(size_t i) { return Symbol('l',i); } /* ************************************************************************* */ TEST( Graph, equals ) { Graph fg = createNonlinearFactorGraph(); Graph fg2 = createNonlinearFactorGraph(); CHECK( fg.equals(fg2) ); } /* ************************************************************************* */ TEST( Graph, error ) { Graph fg = createNonlinearFactorGraph(); Values c1 = createValues(); double actual1 = fg.error(c1); DOUBLES_EQUAL( 0.0, actual1, 1e-9 ); Values c2 = createNoisyValues(); double actual2 = fg.error(c2); DOUBLES_EQUAL( 5.625, actual2, 1e-9 ); } /* ************************************************************************* */ TEST( Graph, keys ) { Graph fg = createNonlinearFactorGraph(); set actual = fg.keys(); LONGS_EQUAL(3, actual.size()); set::const_iterator it = actual.begin(); LONGS_EQUAL(kl(1), *(it++)); LONGS_EQUAL(kx(1), *(it++)); LONGS_EQUAL(kx(2), *(it++)); } /* ************************************************************************* */ TEST( Graph, GET_ORDERING) { // Ordering expected; expected += "x1","l1","x2"; // For starting with x1,x2,l1 Ordering expected; expected += kl(1), kx(2), kx(1); // For starting with l1,x1,x2 Graph nlfg = createNonlinearFactorGraph(); SymbolicFactorGraph::shared_ptr symbolic; Ordering::shared_ptr ordering; boost::tie(symbolic, ordering) = nlfg.symbolic(createNoisyValues()); Ordering actual = *nlfg.orderingCOLAMD(createNoisyValues()); CHECK(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( Graph, probPrime ) { Graph fg = createNonlinearFactorGraph(); Values cfg = createValues(); // evaluate the probability of the factor graph double actual = fg.probPrime(cfg); double expected = 1.0; DOUBLES_EQUAL(expected,actual,0); } /* ************************************************************************* */ TEST( Graph, linearize ) { Graph fg = createNonlinearFactorGraph(); Values initial = createNoisyValues(); boost::shared_ptr > linearized = fg.linearize(initial, *initial.orderingArbitrary()); FactorGraph expected = createGaussianFactorGraph(*initial.orderingArbitrary()); CHECK(assert_equal(expected,*linearized)); // Needs correct linearizations } /* ************************************************************************* */ TEST( Graph, clone ) { Graph fg = createNonlinearFactorGraph(); Graph actClone = fg.clone(); EXPECT(assert_equal(fg, actClone)); for (size_t i=0; i rekey_mapping; rekey_mapping.insert(make_pair(kl(1), kl(4))); Graph actRekey = init.rekey(rekey_mapping); // ensure deep clone LONGS_EQUAL(init.size(), actRekey.size()); for (size_t i=0; i