/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testSubgraphSolver.cpp * @brief Unit tests for SubgraphSolver * @author Yong-Dian Jian **/ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace boost::assign; using namespace std; using namespace gtsam; using namespace example; /* ************************************************************************* */ /** unnormalized error */ static double error(const GaussianFactorGraph& fg, const VectorValues& x) { double total_error = 0.; BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, fg) total_error += factor->error(x); return total_error; } /* ************************************************************************* */ TEST( SubgraphSolver, constructor1 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b // The first constructor just takes a factor graph (and parameters) // and it will split the graph into A1 and A2, where A1 is a spanning tree SubgraphSolverParameters parameters; SubgraphSolver solver(Ab, parameters); VectorValues optimized = solver.optimize(); // does PCG optimization DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor2 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b // Get the spanning tree and corresponding ordering GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2 boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab); // The second constructor takes two factor graphs, // so the caller can specify the preconditioner (Ab1) and the constraints that are left out (Ab2) SubgraphSolverParameters parameters; SubgraphSolver solver(Ab1_, Ab2_, parameters); VectorValues optimized = solver.optimize(); DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor3 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b // Get the spanning tree and corresponding ordering GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2 boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab); // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2 via QR factorization, where R1 is square UT GaussianBayesNet::shared_ptr Rc1 = // EliminationTree::Create(Ab1_)->eliminate(&EliminateQR); // The third constructor allows the caller to pass an already solved preconditioner Rc1_ // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before SubgraphSolverParameters parameters; SubgraphSolver solver(Rc1, Ab2_, parameters); VectorValues optimized = solver.optimize(); DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */