""" A script validating the Preintegration of IMU measurements """ import math import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D import gtsam from gtsam_utils import plotPose3 IMU_FIG = 1 GROUND_TRUTH_FIG = 2 class PreintegrationExample(object): @staticmethod def defaultParams(g): """Create default parameters with Z *up* and realistic noise parameters""" params = gtsam.PreintegrationParams.MakeSharedU(g) kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW kAccelSigma = 0.1 / 60 # 10 cm VRW params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float) params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float) params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float) return params def __init__(self): # setup interactive plotting plt.ion() # Setup loop scenario # Forward velocity 2m/s # Pitch up with angular velocity 6 degree/sec (negative in FLU) v = 2 w = math.radians(30) W = np.array([0, -w, 0]) V = np.array([v, 0, 0]) self.scenario = gtsam.ConstantTwistScenario(W, V) self.dt = 1e-2 # Calculate time to do 1 loop self.radius = v / w self.timeForOneLoop = 2.0 * math.pi / w self.labels = list('xyz') self.colors = list('rgb') # Create runner self.g = 10 # simple gravity constant self.params = self.defaultParams(self.g) ptr = gtsam.ScenarioPointer(self.scenario) accBias = np.array([0, 0.1, 0]) gyroBias = np.array([0, 0, 0]) self.actualBias = gtsam.ConstantBias(accBias, gyroBias) self.runner = gtsam.ScenarioRunner(ptr, self.params, self.dt, self.actualBias) def plotImu(self, t, measuredOmega, measuredAcc): plt.figure(IMU_FIG) # plot angular velocity omega_b = self.scenario.omega_b(t) for i, (label, color) in enumerate(zip(self.labels, self.colors)): plt.subplot(4, 3, i + 1) plt.scatter(t, omega_b[i], color='k', marker='.') plt.scatter(t, measuredOmega[i], color=color, marker='.') plt.xlabel('angular velocity ' + label) # plot acceleration in nav acceleration_n = self.scenario.acceleration_n(t) for i, (label, color) in enumerate(zip(self.labels, self.colors)): plt.subplot(4, 3, i + 4) plt.scatter(t, acceleration_n[i], color=color, marker='.') plt.xlabel('acceleration in nav ' + label) # plot acceleration in body acceleration_b = self.scenario.acceleration_b(t) for i, (label, color) in enumerate(zip(self.labels, self.colors)): plt.subplot(4, 3, i + 7) plt.scatter(t, acceleration_b[i], color=color, marker='.') plt.xlabel('acceleration in body ' + label) # plot actual specific force, as well as corrupted actual = self.runner.actualSpecificForce(t) for i, (label, color) in enumerate(zip(self.labels, self.colors)): plt.subplot(4, 3, i + 10) plt.scatter(t, actual[i], color='k', marker='.') plt.scatter(t, measuredAcc[i], color=color, marker='.') plt.xlabel('specific force ' + label) def plotGroundTruthPose(self, t): # plot ground truth pose, as well as prediction from integrated IMU measurements actualPose = self.scenario.pose(t) plotPose3(GROUND_TRUTH_FIG, actualPose, 0.3) ax = plt.gca() ax.set_xlim3d(-self.radius, self.radius) ax.set_ylim3d(-self.radius, self.radius) ax.set_zlim3d(0, self.radius * 2) plt.pause(0.01) def run(self): # simulate the loop up to the top T = self.timeForOneLoop for i, t in enumerate(np.arange(0, T, self.dt)): measuredOmega = self.runner.measuredAngularVelocity(t) measuredAcc = self.runner.measuredSpecificForce(t) if i % 25 == 0: self.plotImu(t, measuredOmega, measuredAcc) self.plotGroundTruthPose(t) pim = self.runner.integrate(t, self.actualBias, True) predictedNavState = self.runner.predict(pim, self.actualBias) plotPose3(GROUND_TRUTH_FIG, predictedNavState.pose(), 0.1) plt.ioff() plt.show() if __name__ == '__main__': PreintegrationExample().run()