/** * @file GaussianBayesNet.h * @brief Chordal Bayes Net, the result of eliminating a factor graph * @brief GaussianBayesNet * @author Frank Dellaert */ // \callgraph #pragma once #include #include "ConditionalGaussian.h" #include "BayesNet.h" namespace gtsam { /** A Bayes net made from linear-Gaussian densities */ typedef BayesNet GaussianBayesNet; /** Create a scalar Gaussian */ GaussianBayesNet scalarGaussian(const std::string& key, double mu=0.0, double sigma=1.0); /** Create a simple Gaussian on a single multivariate variable */ GaussianBayesNet simpleGaussian(const std::string& key, const Vector& mu, double sigma=1.0); /** * Add a conditional node with one parent * |Rx+Sy-d| */ void push_front(GaussianBayesNet& bn, const std::string& key, Vector d, Matrix R, const std::string& name1, Matrix S, Vector sigmas); /** * Add a conditional node with two parents * |Rx+Sy+Tz-d| */ void push_front(GaussianBayesNet& bn, const std::string& key, Vector d, Matrix R, const std::string& name1, Matrix S, const std::string& name2, Matrix T, Vector sigmas); /** * optimize, i.e. return x = inv(R)*d */ VectorConfig optimize(const GaussianBayesNet&); /** * Return (dense) upper-triangular matrix representation */ std::pair matrix(const GaussianBayesNet&); } /// namespace gtsam