/** * @file testNonlinearFactor.cpp * @brief Unit tests for Non-Linear Factor, * create a non linear factor graph and a configuration for it and * calculate the error for the factor. * @author Christian Potthast **/ /*STL/C++*/ #include #include #include "Matrix.h" #include "smallExample.h" #include "Simulated2DMeasurement.h" #include "Pose2.h" using namespace std; using namespace gtsam; typedef boost::shared_ptr > shared_nlf; /* ************************************************************************* */ TEST( NonlinearFactor, equals ) { double sigma = 1.0; // create two nonlinear2 factors Vector z3(2); z3(0) = 0. ; z3(1) = -1.; Simulated2DMeasurement f0(z3, sigma, "x1", "l1"); // measurement between x2 and l1 Vector z4(2); z4(0)= -1.5 ; z4(1) = -1.; Simulated2DMeasurement f1(z4, sigma, "x2", "l1"); CHECK(assert_equal(f0,f0)); CHECK(f0.equals(f0)); CHECK(!f0.equals(f1)); CHECK(!f1.equals(f0)); } /* ************************************************************************* */ TEST( NonlinearFactor, equals2 ) { // create a non linear factor graph ExampleNonlinearFactorGraph fg = createNonlinearFactorGraph(); // get two factors shared_nlf f0 = fg[0], f1 = fg[1]; CHECK(f0->equals(*f0)); CHECK(!f0->equals(*f1)); CHECK(!f1->equals(*f0)); } /* ************************************************************************* */ TEST( NonlinearFactor, NonlinearFactor ) { // create a non linear factor graph ExampleNonlinearFactorGraph fg = createNonlinearFactorGraph(); // create a configuration for the non linear factor graph VectorConfig cfg = createNoisyConfig(); // get the factor "f1" from the factor graph shared_nlf factor = fg[0]; // calculate the error_vector from the factor "f1" Vector actual_e = factor->error_vector(cfg); Vector e(2); e(0) = -0.1; e(1) = -0.1; CHECK(assert_equal(e,actual_e)); // the expected value for the error from the factor // error_vector / sigma = [0.1 0.1]/0.1 = [1;1] // error = 0.5 * [1 1] * [1;1] = 1 double expected = 1.0; // calculate the error from the factor "f1" double actual = factor->error(cfg); DOUBLES_EQUAL(expected,actual,0.00000001); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f1 ) { // Grab a non-linear factor ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph(); boost::shared_ptr nlf = boost::static_pointer_cast(nfg[0]); // We linearize at noisy config from SmallExample VectorConfig c = createNoisyConfig(); GaussianFactor::shared_ptr actual = nlf->linearize(c); GaussianFactorGraph lfg = createGaussianFactorGraph(); GaussianFactor::shared_ptr expected = lfg[0]; CHECK(expected->equals(*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f2 ) { // Grab a non-linear factor ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph(); boost::shared_ptr nlf = boost::static_pointer_cast(nfg[1]); // We linearize at noisy config from SmallExample VectorConfig c = createNoisyConfig(); GaussianFactor::shared_ptr actual = nlf->linearize(c); GaussianFactorGraph lfg = createGaussianFactorGraph(); GaussianFactor::shared_ptr expected = lfg[1]; CHECK(expected->equals(*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f3 ) { // Grab a non-linear factor ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph(); boost::shared_ptr nlf = boost::static_pointer_cast(nfg[2]); // We linearize at noisy config from SmallExample VectorConfig c = createNoisyConfig(); GaussianFactor::shared_ptr actual = nlf->linearize(c); GaussianFactorGraph lfg = createGaussianFactorGraph(); GaussianFactor::shared_ptr expected = lfg[2]; CHECK(expected->equals(*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f4 ) { // Grab a non-linear factor ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph(); boost::shared_ptr nlf = boost::static_pointer_cast(nfg[3]); // We linearize at noisy config from SmallExample VectorConfig c = createNoisyConfig(); GaussianFactor::shared_ptr actual = nlf->linearize(c); GaussianFactorGraph lfg = createGaussianFactorGraph(); GaussianFactor::shared_ptr expected = lfg[3]; CHECK(expected->equals(*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, size ) { // create a non linear factor graph ExampleNonlinearFactorGraph fg = createNonlinearFactorGraph(); // create a configuration for the non linear factor graph VectorConfig cfg = createNoisyConfig(); // get some factors from the graph shared_nlf factor1 = fg[0]; shared_nlf factor2 = fg[1]; shared_nlf factor3 = fg[2]; CHECK(factor1->size() == 1); CHECK(factor2->size() == 2); CHECK(factor3->size() == 2); } /* ************************************************************************* */ Vector RotatePoseDisplacement(Vector d, double theta) { double co=cos(theta); double si=sin(theta); return Matrix_(3,3, co, -si, 0.0, si, co, 0.0, 0.0, 0.0, 1.0)*d; } Vector h(const Pose2& p1, const Pose2& p2) { double dx= p2.x()-p1.x(); double dy= p2.y()-p1.y(); double dtheta= p2.theta()-p1.theta(); return RotatePoseDisplacement(Vector_(3,dx,dy,dtheta),-p1.theta()); } Matrix H1(const Pose2& p1, const Pose2& p2) { double dx= p2.x()-p1.x(); double dy= p2.y()-p1.y(); double co=cos(p1.theta()); double si=sin(p1.theta()); return Matrix_(3,3, -co, -si, -si*dx+co*dy, si, -co, -co*dx-si*dy, 0.0, 0.0, -1.0); } Matrix H2(const Pose2& p1) { double co=cos(p1.theta()); double si=sin(p1.theta()); return Matrix_(3,3, co, si, 0.0, -si, co, 0.0, 0.0, 0.0, 1.0); } TEST( PoseConstraintFactor2, testFunctions ) { Pose2 p1(0.0, 6.0, 0.0); Pose2 p2(0.101826, 6.111236, 0.011499); //expected Vector expectedh = Vector_(3, 0.101826, 0.111236, 0.011499); Matrix expectedH1 = Matrix_(3,3,-1.0, 0.0, 0.111236, 0.0, -1.0, -0.101826, 0.0, 0.0, -1.0); Matrix expectedH2 = Matrix_(3,3, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0); // actual Vector actualh = h(p1,p2); Matrix actualH1 = H1(p1,p2); Matrix actualH2 = H2(p1); CHECK(assert_equal(actualh,expectedh)); CHECK(assert_equal(actualH1,expectedH1)); CHECK(assert_equal(actualH2,expectedH2)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */