/** * @file smallExample.cpp * @brief Create small example with two poses and one landmark * @brief smallExample * @author Carlos Nieto * @author Frank dellaert */ #include #include using namespace std; #include "Ordering.h" #include "Matrix.h" #include "NonlinearFactor.h" #include "smallExample.h" #include "Point2Prior.h" #include "Simulated2DOdometry.h" #include "Simulated2DMeasurement.h" #include "simulated2D.h" // template definitions #include "FactorGraph-inl.h" #include "NonlinearFactorGraph-inl.h" namespace gtsam { typedef boost::shared_ptr > shared; /* ************************************************************************* */ boost::shared_ptr sharedNonlinearFactorGraph() { // Create boost::shared_ptr nlfg(new ExampleNonlinearFactorGraph); // prior on x1 double sigma1=0.1; Vector mu = zero(2); shared f1(new Point2Prior(mu, sigma1, "x1")); nlfg->push_back(f1); // odometry between x1 and x2 double sigma2=0.1; Vector z2(2); z2(0) = 1.5 ; z2(1) = 0; shared f2(new Simulated2DOdometry(z2, sigma2, "x1", "x2")); nlfg->push_back(f2); // measurement between x1 and l1 double sigma3=0.2; Vector z3(2); z3(0) = 0. ; z3(1) = -1.; shared f3(new Simulated2DMeasurement(z3, sigma3, "x1", "l1")); nlfg->push_back(f3); // measurement between x2 and l1 double sigma4=0.2; Vector z4(2); z4(0)= -1.5 ; z4(1) = -1.; shared f4(new Simulated2DMeasurement(z4, sigma4, "x2", "l1")); nlfg->push_back(f4); return nlfg; } /* ************************************************************************* */ ExampleNonlinearFactorGraph createNonlinearFactorGraph() { return *sharedNonlinearFactorGraph(); } /* ************************************************************************* */ VectorConfig createConfig() { Vector v_x1(2); v_x1(0) = 0.; v_x1(1) = 0.; Vector v_x2(2); v_x2(0) = 1.5; v_x2(1) = 0.; Vector v_l1(2); v_l1(0) = 0.; v_l1(1) = -1.; VectorConfig c; c.insert("x1", v_x1); c.insert("x2", v_x2); c.insert("l1", v_l1); return c; } /* ************************************************************************* */ boost::shared_ptr sharedNoisyConfig() { Vector v_x1(2); v_x1(0) = 0.1; v_x1(1) = 0.1; Vector v_x2(2); v_x2(0) = 1.4; v_x2(1) = 0.2; Vector v_l1(2); v_l1(0) = 0.1; v_l1(1) = -1.1; boost::shared_ptr c(new VectorConfig); c->insert("x1", v_x1); c->insert("x2", v_x2); c->insert("l1", v_l1); return c; } /* ************************************************************************* */ VectorConfig createNoisyConfig() { return *sharedNoisyConfig(); } /* ************************************************************************* */ VectorConfig createCorrectDelta() { Vector v_x1(2); v_x1(0) = -0.1; v_x1(1) = -0.1; Vector v_x2(2); v_x2(0) = 0.1; v_x2(1) = -0.2; Vector v_l1(2); v_l1(0) = -0.1; v_l1(1) = 0.1; VectorConfig c; c.insert("x1", v_x1); c.insert("x2", v_x2); c.insert("l1", v_l1); return c; } /* ************************************************************************* */ VectorConfig createZeroDelta() { Vector v_x1(2); v_x1(0) = 0; v_x1(1) = 0; Vector v_x2(2); v_x2(0) = 0; v_x2(1) = 0; Vector v_l1(2); v_l1(0) = 0; v_l1(1) = 0; VectorConfig c; c.insert("x1", v_x1); c.insert("x2", v_x2); c.insert("l1", v_l1); return c; } /* ************************************************************************* */ GaussianFactorGraph createGaussianFactorGraph() { Matrix I = eye(2); VectorConfig c = createNoisyConfig(); // Create empty graph GaussianFactorGraph fg; // linearized prior on x1: c["x1"]+x1=0 i.e. x1=-c["x1"] double sigma1 = 0.1; Vector b1 = - c["x1"]; fg.add("x1", I, b1, sigma1); // odometry between x1 and x2: x2-x1=[0.2;-0.1] double sigma2 = 0.1; Vector b2 = Vector_(2,0.2,-0.1); fg.add("x1", -I, "x2", I, b2, sigma2); // measurement between x1 and l1: l1-x1=[0.0;0.2] double sigma3 = 0.2; Vector b3 = Vector_(2,0.0,0.2); fg.add("x1", -I, "l1", I, b3, sigma3); // measurement between x2 and l1: l1-x2=[-0.2;0.3] double sigma4 = 0.2; Vector b4 = Vector_(2,-0.2,0.3); fg.add("x2", -I, "l1", I, b4, sigma4); return fg; } /* ************************************************************************* */ /** create small Chordal Bayes Net x <- y * x y d * 1 1 9 * 1 5 */ GaussianBayesNet createSmallGaussianBayesNet() { Matrix R11 = Matrix_(1,1,1.0), S12 = Matrix_(1,1,1.0); Matrix R22 = Matrix_(1,1,1.0); Vector d1(1), d2(1); d1(0) = 9; d2(0) = 5; Vector tau(1); tau(0) = 1.0; // define nodes and specify in reverse topological sort (i.e. parents last) GaussianConditional::shared_ptr Px_y(new GaussianConditional("x",d1,R11,"y",S12,tau)), Py(new GaussianConditional("y",d2,R22,tau)); GaussianBayesNet cbn; cbn.push_back(Px_y); cbn.push_back(Py); return cbn; } /* ************************************************************************* */ // Some nonlinear functions to optimize /* ************************************************************************* */ namespace smallOptimize { Vector h(const Vector& v) { double x = v(0); return Vector_(2,cos(x),sin(x)); }; Matrix H(const Vector& v) { double x = v(0); return Matrix_(2,1,-sin(x),cos(x)); }; } /* ************************************************************************* */ boost::shared_ptr sharedReallyNonlinearFactorGraph() { boost::shared_ptr fg(new ExampleNonlinearFactorGraph); Vector z = Vector_(2,1.0,0.0); double sigma = 0.1; boost::shared_ptr factor(new NonlinearFactor1(z,sigma,&smallOptimize::h,"x",&smallOptimize::H)); fg->push_back(factor); return fg; } ExampleNonlinearFactorGraph createReallyNonlinearFactorGraph() { return *sharedReallyNonlinearFactorGraph(); } /* ************************************************************************* */ GaussianFactorGraph createSmoother(int T) { // noise on measurements and odometry, respectively double sigma1 = 1, sigma2 = 1; // Create ExampleNonlinearFactorGraph nlfg; VectorConfig poses; // prior on x1 Vector x1 = Vector_(2,1.0,0.0); string key1 = symbol('x', 1); shared prior(new Point2Prior(x1, sigma1, key1)); nlfg.push_back(prior); poses.insert(key1, x1); for (int t = 2; t <= T; t++) { // odometry between x_t and x_{t-1} Vector odo = Vector_(2, 1.0, 0.0); string key = symbol('x', t); shared odometry(new Simulated2DOdometry(odo, sigma2, symbol('x', t - 1), key)); nlfg.push_back(odometry); // measurement on x_t is like perfect GPS Vector xt = Vector_(2, (double)t, 0.0); shared measurement(new Point2Prior(xt, sigma1, key)); nlfg.push_back(measurement); // initial estimate poses.insert(key, xt); } GaussianFactorGraph lfg = nlfg.linearize(poses); return lfg; } /* ************************************************************************* */ GaussianFactorGraph createSimpleConstraintGraph() { // create unary factor // prior on "x", mean = [1,-1], sigma=0.1 double sigma = 0.1; Matrix Ax = eye(2); Vector b1(2); b1(0) = 1.0; b1(1) = -1.0; GaussianFactor::shared_ptr f1(new GaussianFactor("x", Ax, b1, sigma)); // create binary constraint factor // between "x" and "y", that is going to be the only factor on "y" // |1 0||x_1| + |-1 0||y_1| = |0| // |0 1||x_2| | 0 -1||y_2| |0| Matrix Ax1 = eye(2); Matrix Ay1 = eye(2) * -1; Vector b2 = Vector_(2, 0.0, 0.0); GaussianFactor::shared_ptr f2( new GaussianFactor("x", Ax1, "y", Ay1, b2, 0.0)); // construct the graph GaussianFactorGraph fg; fg.push_back(f1); fg.push_back(f2); return fg; } /* ************************************************************************* */ VectorConfig createSimpleConstraintConfig() { VectorConfig config; Vector v = Vector_(2, 1.0, -1.0); config.insert("x", v); config.insert("y", v); return config; } /* ************************************************************************* */ GaussianFactorGraph createSingleConstraintGraph() { // create unary factor // prior on "x", mean = [1,-1], sigma=0.1 double sigma = 0.1; Matrix Ax = eye(2); Vector b1(2); b1(0) = 1.0; b1(1) = -1.0; GaussianFactor::shared_ptr f1(new GaussianFactor("x", Ax, b1, sigma)); // create binary constraint factor // between "x" and "y", that is going to be the only factor on "y" // |1 2||x_1| + |10 0||y_1| = |1| // |2 1||x_2| |0 10||y_2| |2| Matrix Ax1(2, 2); Ax1(0, 0) = 1.0; Ax1(0, 1) = 2.0; Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0; Matrix Ay1 = eye(2) * 10; Vector b2 = Vector_(2, 1.0, 2.0); GaussianFactor::shared_ptr f2( new GaussianFactor("x", Ax1, "y", Ay1, b2, 0.0)); // construct the graph GaussianFactorGraph fg; fg.push_back(f1); fg.push_back(f2); return fg; } /* ************************************************************************* */ VectorConfig createSingleConstraintConfig() { VectorConfig config; config.insert("x", Vector_(2, 1.0, -1.0)); config.insert("y", Vector_(2, 0.2, 0.1)); return config; } /* ************************************************************************* */ GaussianFactorGraph createMultiConstraintGraph() { // unary factor 1 double sigma = 0.1; Matrix A = eye(2); Vector b = Vector_(2, -2.0, 2.0); GaussianFactor::shared_ptr lf1(new GaussianFactor("x", A, b, sigma)); // constraint 1 Matrix A11(2,2); A11(0,0) = 1.0 ; A11(0,1) = 2.0; A11(1,0) = 2.0 ; A11(1,1) = 1.0; Matrix A12(2,2); A12(0,0) = 10.0 ; A12(0,1) = 0.0; A12(1,0) = 0.0 ; A12(1,1) = 10.0; Vector b1(2); b1(0) = 1.0; b1(1) = 2.0; GaussianFactor::shared_ptr lc1(new GaussianFactor("x", A11, "y", A12, b1, 0.0)); // constraint 2 Matrix A21(2,2); A21(0,0) = 3.0 ; A21(0,1) = 4.0; A21(1,0) = -1.0 ; A21(1,1) = -2.0; Matrix A22(2,2); A22(0,0) = 1.0 ; A22(0,1) = 1.0; A22(1,0) = 1.0 ; A22(1,1) = 2.0; Vector b2(2); b2(0) = 3.0; b2(1) = 4.0; GaussianFactor::shared_ptr lc2(new GaussianFactor("x", A21, "z", A22, b2, 0.0)); // construct the graph GaussianFactorGraph fg; fg.push_back(lf1); fg.push_back(lc1); fg.push_back(lc2); return fg; } /* ************************************************************************* */ VectorConfig createMultiConstraintConfig() { VectorConfig config; config.insert("x", Vector_(2, -2.0, 2.0)); config.insert("y", Vector_(2, -0.1, 0.4)); config.insert("z", Vector_(2, -4.0, 5.0)); return config; } /* ************************************************************************* */ //GaussianFactorGraph createConstrainedGaussianFactorGraph() //{ // GaussianFactorGraph graph; // // // add an equality factor // Vector v1(2); v1(0)=1.;v1(1)=2.; // GaussianFactor::shared_ptr f1(new GaussianFactor(v1, "x0")); // graph.push_back_eq(f1); // // // add a normal linear factor // Matrix A21 = -1 * eye(2); // // Matrix A22 = eye(2); // // Vector b(2); // b(0) = 2 ; b(1) = 3; // // double sigma = 0.1; // GaussianFactor::shared_ptr f2(new GaussianFactor("x0", A21/sigma, "x1", A22/sigma, b/sigma)); // graph.push_back(f2); // return graph; //} /* ************************************************************************* */ // ConstrainedNonlinearFactorGraph , VectorConfig> createConstrainedNonlinearFactorGraph() { // ConstrainedNonlinearFactorGraph , VectorConfig> graph; // VectorConfig c = createConstrainedConfig(); // // // equality constraint for initial pose // GaussianFactor::shared_ptr f1(new GaussianFactor(c["x0"], "x0")); // graph.push_back_eq(f1); // // // odometry between x0 and x1 // double sigma = 0.1; // shared f2(new Simulated2DOdometry(c["x1"] - c["x0"], sigma, "x0", "x1")); // graph.push_back(f2); // TODO // return graph; // } /* ************************************************************************* */ //VectorConfig createConstrainedConfig() //{ // VectorConfig config; // // Vector x0(2); x0(0)=1.0; x0(1)=2.0; // config.insert("x0", x0); // // Vector x1(2); x1(0)=3.0; x1(1)=5.0; // config.insert("x1", x1); // // return config; //} /* ************************************************************************* */ //VectorConfig createConstrainedLinConfig() //{ // VectorConfig config; // // Vector x0(2); x0(0)=1.0; x0(1)=2.0; // value doesn't actually matter // config.insert("x0", x0); // // Vector x1(2); x1(0)=2.3; x1(1)=5.3; // config.insert("x1", x1); // // return config; //} /* ************************************************************************* */ //VectorConfig createConstrainedCorrectDelta() //{ // VectorConfig config; // // Vector x0(2); x0(0)=0.; x0(1)=0.; // config.insert("x0", x0); // // Vector x1(2); x1(0)= 0.7; x1(1)= -0.3; // config.insert("x1", x1); // // return config; //} /* ************************************************************************* */ //ConstrainedGaussianBayesNet createConstrainedGaussianBayesNet() //{ // ConstrainedGaussianBayesNet cbn; // VectorConfig c = createConstrainedConfig(); // // // add regular conditional gaussian - no parent // Matrix R = eye(2); // Vector d = c["x1"]; // double sigma = 0.1; // GaussianConditional::shared_ptr f1(new GaussianConditional(d/sigma, R/sigma)); // cbn.insert("x1", f1); // // // add a delta function to the cbn // ConstrainedGaussianConditional::shared_ptr f2(new ConstrainedGaussianConditional); //(c["x0"], "x0")); // cbn.insert_df("x0", f2); // // return cbn; //} } // namespace gtsam