/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testPlanarSLAMExample_lago.cpp * @brief Unit tests for planar SLAM example using the initialization technique * LAGO (Linear Approximation for Graph Optimization) proposed in: * * L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate * approximation for planar pose graph optimization, IJRR, 2014. * * L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation * for graph-based simultaneous localization and mapping, RSS, 2011. * * @author Luca Carlone * @author Frank Dellaert * @date May 14, 2014 */ // As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent // the robot positions and Point2 variables (x, y) to represent the landmark coordinates. #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems. // Here we will use a RangeBearing factor for the range-bearing measurements to identified // landmarks, and Between factors for the relative motion described by odometry measurements. // Also, we will initialize the robot at the origin using a Prior factor. #include #include // When the factors are created, we will add them to a Factor Graph. As the factors we are using // are nonlinear factors, we will need a Nonlinear Factor Graph. #include #include #include #include #include using namespace std; using namespace gtsam; using namespace boost::assign; Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x',3); static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1)); static const double PI = boost::math::constants::pi(); /* ************************************************************************* */ Values initializeLago(const NonlinearFactorGraph& graph) { // Order measurements: ordered spanning path first, loop closure later // Extract angles in so2 from relative rotations in SO2 // Correct orientations along loops // Create a linear factor graph (LFG) of scalars // Solve the LFG // Store solution of the LFG in values Values estimateLago; return estimateLago; } /* *************************************************************************** */ TEST( Lago, smallGraph_GTmeasurements ) { // We consider a small graph: // symbolic FG // x2 0 1 // / | \ 1 2 // / | \ 2 3 // x3 | x4 2 1 // \ | / 1 3 // \ | / // x0 Pose2 pose0 = Pose2( 0.000000, 0.000000, 0.000000); Pose2 pose1 = Pose2( 1.000000, 1.000000, 1.570796); Pose2 pose2 = Pose2( 0.000000, 2.000000, 3.141593); Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389); NonlinearFactorGraph graph; BetweenFactor factor01(x0, x1, pose0.between(pose1), model); graph.add(factor01); BetweenFactor factor12(x1, x2, pose1.between(pose2), model); graph.add(factor12); BetweenFactor factor23(x2, x3, pose2.between(pose3), model); graph.add(factor23); BetweenFactor factor20(x2, x0, pose2.between(pose0), model); graph.add(factor20); BetweenFactor factor03(x0, x3, pose0.between(pose3), model); graph.add(factor03); // graph.print("graph"); Values initialGuessLago = initializeLago(graph); Vector expectedOrientations = (Vector(4) << 0.0, 0.5*PI, PI, 1.5*PI); Vector actualOrientations(4); actualOrientations(0) = (initialGuessLago.at(x0)).theta(); actualOrientations(1) = (initialGuessLago.at(x1)).theta(); actualOrientations(2) = (initialGuessLago.at(x2)).theta(); actualOrientations(3) = (initialGuessLago.at(x3)).theta(); EXPECT(assert_equal(expectedOrientations, actualOrientations, 1e-6)); //DOUBLES_EQUAL(expected, actual, 1e-6); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */