/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Expression-inl.h * @date September 18, 2014 * @author Frank Dellaert * @author Paul Furgale * @brief Internals for Expression.h, not for general consumption */ #pragma once #include #include #include namespace gtsam { template class Expression; template class MethodExpression; /** * Expression node. The superclass for objects that do the heavy lifting * An Expression has a pointer to an ExpressionNode underneath * allowing Expressions to have polymorphic behaviour even though they * are passed by value. This is the same way boost::function works. * http://loki-lib.sourceforge.net/html/a00652.html */ template class ExpressionNode { protected: ExpressionNode() { } public: typedef std::map JacobianMap; /// Destructor virtual ~ExpressionNode() { } /// Return keys that play in this expression as a set virtual std::set keys() const = 0; /// Return value and optional derivatives virtual T value(const Values& values, boost::optional = boost::none) const = 0; }; /// Constant Expression template class ConstantExpression: public ExpressionNode { T value_; /// Constructor with a value, yielding a constant ConstantExpression(const T& value) : value_(value) { } friend class Expression ; public: typedef std::map JacobianMap; /// Destructor virtual ~ConstantExpression() { } /// Return keys that play in this expression, i.e., the empty set virtual std::set keys() const { std::set keys; return keys; } /// Return value and optional derivatives virtual T value(const Values& values, boost::optional jacobians = boost::none) const { return value_; } }; //----------------------------------------------------------------------------- /// Leaf Expression template class LeafExpression: public ExpressionNode { Key key_; /// Constructor with a single key LeafExpression(Key key) : key_(key) { } friend class Expression ; public: typedef std::map JacobianMap; /// Destructor virtual ~LeafExpression() { } /// Return keys that play in this expression virtual std::set keys() const { std::set keys; keys.insert(key_); return keys; } /// Return value and optional derivatives virtual T value(const Values& values, boost::optional jacobians = boost::none) const { const T& value = values.at(key_); if (jacobians) { JacobianMap::iterator it = jacobians->find(key_); if (it != jacobians->end()) { it->second += Eigen::MatrixXd::Identity(value.dim(), value.dim()); } else { (*jacobians)[key_] = Eigen::MatrixXd::Identity(value.dim(), value.dim()); } } return value; } }; //----------------------------------------------------------------------------- /// Unary Expression template class UnaryExpression: public ExpressionNode { public: typedef boost::function)> function; private: boost::shared_ptr > expression_; function f_; /// Constructor with a unary function f, and input argument e UnaryExpression(function f, const Expression& e) : expression_(e.root()), f_(f) { } friend class Expression ; public: typedef std::map JacobianMap; /// Destructor virtual ~UnaryExpression() { } /// Return keys that play in this expression virtual std::set keys() const { return expression_->keys(); } /// Return value and optional derivatives virtual T value(const Values& values, boost::optional jacobians = boost::none) const { T value; if (jacobians) { Eigen::MatrixXd H; value = f_(expression_->value(values, jacobians), H); JacobianMap::iterator it = jacobians->begin(); for (; it != jacobians->end(); ++it) { it->second = H * it->second; } } else { value = f_(expression_->value(values), boost::none); } return value; } }; //----------------------------------------------------------------------------- /// Binary Expression template class BinaryExpression: public ExpressionNode { public: typedef std::map JacobianMap; typedef boost::function< T(const E1&, const E2&, boost::optional, boost::optional)> function; private: boost::shared_ptr > expression1_; boost::shared_ptr > expression2_; function f_; /// Constructor with a binary function f, and two input arguments BinaryExpression(function f, // const Expression& e1, const Expression& e2) : expression1_(e1.root()), expression2_(e2.root()), f_(f) { } friend class Expression; public: /// Combine Jacobians static void combine(const Matrix& H1, const Matrix& H2, const JacobianMap& terms1, const JacobianMap& terms2, JacobianMap& jacobians) { // TODO: both Jacobians and terms are sorted. There must be a simple // but fast algorithm that does this. typedef std::pair Pair; BOOST_FOREACH(const Pair& term, terms1) { JacobianMap::iterator it = jacobians.find(term.first); if (it != jacobians.end()) { it->second += H1 * term.second; } else { jacobians[term.first] = H1 * term.second; } } BOOST_FOREACH(const Pair& term, terms2) { JacobianMap::iterator it = jacobians.find(term.first); if (it != jacobians.end()) { it->second += H2 * term.second; } else { jacobians[term.first] = H2 * term.second; } } } public: /// Destructor virtual ~BinaryExpression() { } /// Return keys that play in this expression virtual std::set keys() const { std::set keys1 = expression1_->keys(); std::set keys2 = expression2_->keys(); keys1.insert(keys2.begin(), keys2.end()); return keys1; } /// Return value and optional derivatives virtual T value(const Values& values, boost::optional jacobians = boost::none) const { T val; if (jacobians) { JacobianMap terms1, terms2; Matrix H1, H2; val = f_(expression1_->value(values, terms1), expression2_->value(values, terms2), H1, H2); combine(H1, H2, terms1, terms2, *jacobians); } else { val = f_(expression1_->value(values), expression2_->value(values), boost::none, boost::none); } return val; } }; //----------------------------------------------------------------------------- /// Binary Expression template class MethodExpression: public ExpressionNode { public: typedef std::map JacobianMap; typedef T (E1::*method)(const E2&, boost::optional, boost::optional) const; private: boost::shared_ptr > expression1_; boost::shared_ptr > expression2_; method f_; /// Constructor with a binary function f, and two input arguments MethodExpression(const Expression& e1, method f, const Expression& e2) : expression1_(e1.root()), expression2_(e2.root()), f_(f) { } friend class Expression ; public: /// Destructor virtual ~MethodExpression() { } /// Return keys that play in this expression virtual std::set keys() const { std::set keys1 = expression1_->keys(); std::set keys2 = expression2_->keys(); keys1.insert(keys2.begin(), keys2.end()); return keys1; } /// Return value and optional derivatives virtual T value(const Values& values, boost::optional jacobians = boost::none) const { T val; if (jacobians) { JacobianMap terms1, terms2; Matrix H1, H2; val = (expression1_->value(values, terms1).*(f_))( expression2_->value(values, terms2), H1, H2); BinaryExpression::combine(H1, H2, terms1, terms2, *jacobians); } else { val = (expression1_->value(values).*(f_))(expression2_->value(values), boost::none, boost::none); } return val; } }; }