/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Similarity3.cpp * @brief Implementation of Similarity3 transform * @author Paul Drews */ #include #include #include namespace gtsam { Similarity3::Similarity3() : R_(), t_(), s_(1) { } Similarity3::Similarity3(double s) : s_(s) { } Similarity3::Similarity3(const Rot3& R, const Point3& t, double s) : R_(R), t_(t), s_(s) { } Similarity3::Similarity3(const Matrix3& R, const Vector3& t, double s) : R_(R), t_(t), s_(s) { } bool Similarity3::equals(const Similarity3& sim, double tol) const { return R_.equals(sim.R_, tol) && t_.equals(sim.t_, tol) && s_ < (sim.s_ + tol) && s_ > (sim.s_ - tol); } bool Similarity3::operator==(const Similarity3& other) const { return (R_.equals(other.R_)) && (t_ == other.t_) && (s_ == other.s_); } void Similarity3::print(const std::string& s) const { std::cout << std::endl; std::cout << s; rotation().print("R:\n"); translation().print("t: "); std::cout << "s: " << scale() << std::endl; } Similarity3 Similarity3::identity() { return Similarity3(); } Similarity3 Similarity3::operator*(const Similarity3& T) const { return Similarity3(R_ * T.R_, ((1.0 / T.s_) * t_) + R_ * T.t_, s_ * T.s_); } Similarity3 Similarity3::inverse() const { Rot3 Rt = R_.inverse(); Point3 sRt = R_.inverse() * (-s_ * t_); return Similarity3(Rt, sRt, 1.0 / s_); } Point3 Similarity3::transform_from(const Point3& p, // OptionalJacobian<3, 7> H1, OptionalJacobian<3, 3> H2) const { if (H1) { const Matrix3 R = R_.matrix(); Matrix3 DR = s_ * R * skewSymmetric(-p.x(), -p.y(), -p.z()); *H1 << DR, R, R * p.vector(); } if (H2) *H2 = s_ * R_.matrix(); // just 3*3 sub-block of matrix() return R_ * (s_ * p) + t_; // TODO: Effect of scale change is this, right? // sR t * (1+v)I 0 * p = s(1+v)R t * p = s(1+v)Rp + t = sRp + vRp + t // 0001 000 1 1 000 1 1 } Point3 Similarity3::operator*(const Point3& p) const { return transform_from(p); } Matrix7 Similarity3::AdjointMap() const { const Matrix3 R = R_.matrix(); const Vector3 t = t_.vector(); Matrix3 A = s_ * skewSymmetric(t) * R; Matrix7 adj; adj << s_ * R, A, -s_ * t, // 3*7 Z_3x3, R, Matrix31::Zero(), // 3*7 Matrix16::Zero(), 1; // 1*7 return adj; } Vector7 Similarity3::Logmap(const Similarity3& s, OptionalJacobian<7, 7> Hm) { // To get the logmap, calculate w and lambda, then solve for u as show at ethaneade.org // www.ethaneade.org/latex2html/lie/node29.html Vector3 w = Rot3::Logmap(s.R_); double lambda = log(s.s_); Matrix33 wx = skewSymmetric(w[0], w[1], w[2]); double lambdasquared = lambda * lambda; double thetasquared = w.transpose() * w; double theta = sqrt(thetasquared); double X = sin(theta)/theta; double Y = (1-cos(theta))/thetasquared; double Z = (1-X)/thetasquared; double W = (0.5-Y)/thetasquared; double alpha = lambdasquared / (lambdasquared * thetasquared); double beta = (exp(-lambda)-1+lambda)/lambdasquared; double gama = Y - (lambda * Z); double mu = (1-lambda+(0.5*lambdasquared)-exp(-lambda))/(lambdasquared*lambda); double upsilon = Z-(lambda*W); double A = (1-exp(-lambda))/lambda; double B = alpha*(beta-gama)+gama; double C = alpha*(mu-upsilon)+upsilon; Matrix33 V = A*Matrix33::Identity() + B*wx + C*wx*wx; Vector3 u = V.inverse()*s.t_.vector(); Vector7 result; result << w, u, lambda; return result; } Similarity3 Similarity3::Expmap(const Vector7& v, OptionalJacobian<7, 7> Hm) { Matrix31 w(v.head<3>()); Matrix33 wx = skewSymmetric(w[0], w[1], w[2]); double lambda = v[6]; double lambdasquared = lambda * lambda; Matrix31 u(v.segment<3>(3)); double thetasquared = w.transpose() * w; double theta = sqrt(thetasquared); double X = sin(theta)/theta; double Y = (1-cos(theta))/thetasquared; double Z = (1-X)/thetasquared; double W = (0.5-Y)/thetasquared; double alpha = lambdasquared / (lambdasquared * thetasquared); double beta = (exp(-lambda)-1+lambda)/lambdasquared; double gama = Y - (lambda * Z); double mu = (1-lambda+(0.5*lambdasquared)-exp(-lambda))/(lambdasquared*lambda); double upsilon = Z-(lambda*W); double A = (1-exp(-lambda))/lambda; double B = alpha*(beta-gama)+gama; double C = alpha*(mu-upsilon)+upsilon; Matrix33 V = A*Matrix33::Identity() + B*wx + C*wx*wx; return Similarity3(Rot3::Expmap(w), Point3(V*u), 1.0/exp(-lambda)); } Similarity3 Similarity3::ChartAtOrigin::Retract(const Vector7& v, ChartJacobian H) { // Will retracting or localCoordinating R work if R is not a unit rotation? // Also, how do we actually get s out? Seems like we need to store it somewhere. // Rot3 r; //Create a zero rotation to do our retraction. // return Similarity3( // // r.retract(v.head<3>()), // retract rotation using v[0,1,2] // Point3(v.segment<3>(3)), // Retract the translation // 1.0 + v[6]); //finally, update scale using v[6] // Use the Expmap return Similarity3::Expmap(v); } Vector7 Similarity3::ChartAtOrigin::Local(const Similarity3& other, ChartJacobian H) { // Rot3 r; //Create a zero rotation to do the retraction // Vector7 v; // v.head<3>() = r.localCoordinates(other.R_); // v.segment<3>(3) = other.t_.vector(); // //v.segment<3>(3) = translation().localCoordinates(other.translation()); // v[6] = other.s_ - 1.0; // return v; // Use the Logmap return Similarity3::Logmap(other); } const Matrix4 Similarity3::matrix() const { Matrix4 T; T.topRows<3>() << s_ * R_.matrix(), t_.vector(); T.bottomRows<1>() << 0, 0, 0, 1; return T; } Similarity3::operator Pose3() const { return Pose3(R_, s_ * t_); } }