/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file PlanarSLAMExample_selfcontained.cpp * @brief Simple robotics example with all typedefs internal to this script. * @author Alex Cunningham */ // add in headers for specific factors #include #include #include // for all nonlinear keys #include // implementations for structures - needed if self-contained, and these should be included last #include #include #include // for modeling measurement uncertainty - all models included here #include // for points and poses #include #include #include #include using namespace std; using namespace gtsam; /** * In this version of the system we make the following assumptions: * - All values are axis aligned * - Robot poses are facing along the X axis (horizontal, to the right in images) * - We have bearing and range information for measurements * - We have full odometry for measurements * - The robot and landmarks are on a grid, moving 2 meters each step * - Landmarks are 2 meters away from the robot trajectory */ int main(int argc, char** argv) { // create keys for variables Symbol i1('x',1), i2('x',2), i3('x',3); Symbol j1('l',1), j2('l',2); // create graph container and add factors to it NonlinearFactorGraph graph; /* add prior */ // gaussian for prior SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin PriorFactor posePrior(i1, priorMean, priorNoise); // create the factor graph.add(posePrior); // add the factor to the graph /* add odometry */ // general noisemodel for odometry SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) // create between factors to represent odometry BetweenFactor odom12(i1, i2, odometry, odometryNoise); BetweenFactor odom23(i2, i3, odometry, odometryNoise); graph.add(odom12); // add both to graph graph.add(odom23); /* add measurements */ // general noisemodel for measurements SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2)); // create the measurement values - indices are (pose id, landmark id) Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90), bearing32 = Rot2::fromDegrees(90); double range11 = sqrt(4+4), range21 = 2.0, range32 = 2.0; // create bearing/range factors BearingRangeFactor meas11(i1, j1, bearing11, range11, meas_model); BearingRangeFactor meas21(i2, j1, bearing21, range21, meas_model); BearingRangeFactor meas32(i3, j2, bearing32, range32, meas_model); // add the factors graph.add(meas11); graph.add(meas21); graph.add(meas32); graph.print("Full Graph"); // initialize to noisy points Values initial; initial.insert(i1, Pose2(0.5, 0.0, 0.2)); initial.insert(i2, Pose2(2.3, 0.1,-0.2)); initial.insert(i3, Pose2(4.1, 0.1, 0.1)); initial.insert(j1, Point2(1.8, 2.1)); initial.insert(j2, Point2(4.1, 1.8)); initial.print("initial estimate"); // optimize using Levenberg-Marquardt optimization with an ordering from colamd // first using sequential elimination LevenbergMarquardtParams lmParams; lmParams.linearSolverType = LevenbergMarquardtParams::SEQUENTIAL_CHOLESKY; Values resultSequential = LevenbergMarquardtOptimizer(graph, initial, lmParams).optimize(); resultSequential.print("final result (solved with a sequential solver)"); // then using multifrontal, advanced interface // Note that we keep the original optimizer object so we can use the COLAMD // ordering it computes. LevenbergMarquardtOptimizer optimizer(graph, initial); Values resultMultifrontal = optimizer.optimize(); resultMultifrontal.print("final result (solved with a multifrontal solver)"); // Print marginals covariances for all variables Marginals marginals(graph, resultMultifrontal, Marginals::CHOLESKY); print(marginals.marginalCovariance(i1), "i1 covariance"); print(marginals.marginalCovariance(i2), "i2 covariance"); print(marginals.marginalCovariance(i3), "i3 covariance"); print(marginals.marginalCovariance(j1), "j1 covariance"); print(marginals.marginalCovariance(j2), "j2 covariance"); return 0; }