/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ExpressionExample.cpp * @brief A structure-from-motion example done with Expressions * @author Frank Dellaert * @author Duy-Nguyen Ta * @date October 1, 2014 */ /** * This is the Expression version of SFMExample * See detailed description of headers there, this focuses on explaining the AD part */ // The two new headers that allow using our Automatic Differentiation Expression framework #include #include // Header order is close to far #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; /* ************************************************************************* */ int main(int argc, char* argv[]) { Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0); noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks and poses vector points = createPoints(); vector poses = createPoses(); // Create a factor graph NonlinearFactorGraph graph; // Specify uncertainty on first pose prior noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // Here we don't use a PriorFactor but directly the BADFactor class // The object x0 is an Expression, and we create a factor wanting it to be equal to poses[0] Pose3_ x0('x',0); graph.push_back(BADFactor(poseNoise, poses[0], x0)); // We create a constant Expression for the calibration here Cal3_S2_ cK(K); // Simulated measurements from each camera pose, adding them to the factor graph for (size_t i = 0; i < poses.size(); ++i) { Pose3_ x('x', i); SimpleCamera camera(poses[i], K); for (size_t j = 0; j < points.size(); ++j) { Point2 measurement = camera.project(points[j]); // Below an expression for the prediction of the measurement: Point3_ p('l', j); Expression prediction = uncalibrate(cK, project(transform_to(x, p))); // Again, here we use a BADFactor graph.push_back(BADFactor(measurementNoise, measurement, prediction)); } } // Add prior on first point to constrain scale, again with BADFActor noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); graph.push_back(BADFactor(pointNoise, points[0], Point3_('l', 0))); // Create perturbed initial Values initialEstimate; for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); for (size_t j = 0; j < points.size(); ++j) initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); cout << "initial error = " << graph.error(initialEstimate) << endl; /* Optimize the graph and print results */ Values result = DoglegOptimizer(graph, initialEstimate).optimize(); cout << "final error = " << graph.error(result) << endl; return 0; } /* ************************************************************************* */