% create a linear factor graph % The non-linear graph above evaluated at NoisyConfig function fg = createGaussianFactorGraph() c = createNoisyConfig(); % Create fg = GaussianFactorGraph; % Create shared Noise model unit2 = SharedDiagonal([1;1]); % prior on x1 I=eye(2); f1 = GaussianFactor('x1', 10*I, [-1;-1], unit2); fg.push_back(f1); % odometry between x1 and x2 f2 = GaussianFactor('x1', -10*I, 'x2', 10*I, [2;-1], unit2); fg.push_back(f2); % measurement between x1 and l1 f3 = GaussianFactor('x1', -5*I, 'l1', 5*I, [0;1], unit2); fg.push_back(f3); % measurement between x2 and l1 f4 = GaussianFactor('x2', -5*I, 'l1', 5*I, [-1;1.5], unit2); fg.push_back(f4); end