class Ordering { Ordering(); void push_back(string s); void print(string s) const; }; class SymbolicFactor{ SymbolicFactor(const Ordering& keys); void print(string s) const; }; class VectorConfig { VectorConfig(); Vector get(string name) const; bool contains(string name) const; size_t size() const; void insert(string name, Vector val); void print(string s) const; bool equals(const VectorConfig& expected, double tol) const; void clear(); }; class GaussianFactorSet { GaussianFactorSet(); void push_back(GaussianFactor* factor); }; class GaussianFactor { GaussianFactor(string key1, Matrix A1, Vector b_in, double sigma); GaussianFactor(string key1, Matrix A1, string key2, Matrix A2, Vector b_in, double sigma); GaussianFactor(string key1, Matrix A1, string key2, Matrix A2, string key3, Matrix A3, Vector b_in, double sigma); bool empty() const; Vector get_b() const; Matrix get_A(string key) const; double error(const VectorConfig& c) const; bool involves(string key) const; void print(string s) const; bool equals(const GaussianFactor& lf, double tol) const; pair matrix(const Ordering& ordering) const; }; class GaussianConditional { GaussianConditional(); GaussianConditional(string key, Vector d, Matrix R, Vector sigmas); GaussianConditional(string key, Vector d, Matrix R, string name1, Matrix S, Vector sigmas); GaussianConditional(string key, Vector d, Matrix R, string name1, Matrix S, string name2, Matrix T, Vector sigmas); void print(string s) const; Vector solve(const VectorConfig& x); void add(string key, Matrix S); bool equals(const GaussianConditional &cg, double tol) const; }; class GaussianBayesNet { GaussianBayesNet(); void print(string s) const; bool equals(const GaussianBayesNet& cbn, double tol) const; void push_back(GaussianConditional* conditional); void push_front(GaussianConditional* conditional); }; class GaussianFactorGraph { GaussianFactorGraph(); size_t size() const; void push_back(GaussianFactor* ptr_f); double error(const VectorConfig& c) const; double probPrime(const VectorConfig& c) const; void print(string s) const; bool equals(const GaussianFactorGraph& lfgraph, double tol) const; void combine(const GaussianFactorGraph& lfg); GaussianConditional* eliminateOne(string key); GaussianBayesNet* eliminate_(const Ordering& ordering); VectorConfig* optimize_(const Ordering& ordering); pair matrix(const Ordering& ordering) const; Matrix sparse(const Ordering& ordering) const; }; class Point2 { Point2(); Point2(double x, double y); double x(); double y(); size_t dim() const; void print(string s) const; }; class Point3 { Point3(); Point3(double x, double y, double z); Point3(Vector v); size_t dim() const; Point3 exmap(Vector d) const; Vector vector() const; double x(); double y(); double z(); void print(string s) const; }; class Point2Prior { Point2Prior(Vector mu, double sigma, string key); Vector error_vector(const VectorConfig& c) const; GaussianFactor* linearize(const VectorConfig& c) const; double sigma(); Vector measurement(); double error(const VectorConfig& c) const; void print(string s) const; }; class Simulated2DOdometry { Simulated2DOdometry(Vector odo, double sigma, string key, string key2); Vector error_vector(const VectorConfig& c) const; GaussianFactor* linearize(const VectorConfig& c) const; double sigma(); Vector measurement(); double error(const VectorConfig& c) const; void print(string s) const; }; class Simulated2DMeasurement { Simulated2DMeasurement(Vector odo, double sigma, string key, string key2); Vector error_vector(const VectorConfig& c) const; GaussianFactor* linearize(const VectorConfig& c) const; double sigma(); Vector measurement(); double error(const VectorConfig& c) const; void print(string s) const; }; class Pose2{ Pose2(); Pose2(const Pose2& pose); Pose2(double x, double y, double theta); void print(string s); bool equals(const Pose2& pose, double tol); double x(); double y(); double theta(); size_t dim() const; Pose2 exmap(Vector v) const; Vector vector() const; Pose2 rotate(double theta) const; }; class Pose2Config{ Pose2 get(string key) const; }; class Pose2Factor { Pose2Factor(string key1, string key2, const Pose2& measured, Matrix measurement_covariance); void print(string name) const; bool equals(const Pose2Factor& expected, double tol) const; double error(const Pose2Config& c) const; size_t size() const; GaussianFactor* linearize(const Pose2Config& config) const; };