/** * @file Rot3.h * @brief Rotation * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert */ // \callgraph #pragma once #include "Point3.h" #include "Testable.h" #include "Lie.h" namespace gtsam { /* 3D Rotation */ class Rot3: Testable { private: /** we store columns ! */ Point3 r1_, r2_, r3_; public: /** default constructor, unit rotation */ Rot3() : r1_(Point3(1.0,0.0,0.0)), r2_(Point3(0.0,1.0,0.0)), r3_(Point3(0.0,0.0,1.0)) {} /** constructor from columns */ Rot3(const Point3& r1, const Point3& r2, const Point3& r3) : r1_(r1), r2_(r2), r3_(r3) {} /** constructor from vector */ Rot3(const Vector &v) : r1_(Point3(v(0),v(1),v(2))), r2_(Point3(v(3),v(4),v(5))), r3_(Point3(v(6),v(7),v(8))) {} /** constructor from doubles in *row* order !!! */ Rot3(double R11, double R12, double R13, double R21, double R22, double R23, double R31, double R32, double R33) : r1_(Point3(R11, R21, R31)), r2_(Point3(R12, R22, R32)), r3_(Point3(R13, R23, R33)) {} /** constructor from matrix */ Rot3(const Matrix& R): r1_(Point3(R(0,0), R(1,0), R(2,0))), r2_(Point3(R(0,1), R(1,1), R(2,1))), r3_(Point3(R(0,2), R(1,2), R(2,2))) {} /** print */ void print(const std::string& s="R") const { gtsam::print(matrix(), s);} /** equals with an tolerance */ bool equals(const Rot3& p, double tol = 1e-9) const; /** return 3*3 rotation matrix */ Matrix matrix() const; /** return 3*3 transpose (inverse) rotation matrix */ Matrix transpose() const; /** returns column vector specified by index */ Point3 column(int index) const; Point3 r1() const { return r1_; } Point3 r2() const { return r2_; } Point3 r3() const { return r3_; } /** use RQ to calculate yaw-pitch-roll angle representation */ Vector ypr() const; private: /** Serialization function */ friend class boost::serialization::access; template void serialize(Archive & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_NVP(r1_); ar & BOOST_SERIALIZATION_NVP(r2_); ar & BOOST_SERIALIZATION_NVP(r3_); } }; /** * Rodriguez' formula to compute an incremental rotation matrix * @param w is the rotation axis, unit length * @param theta rotation angle * @return incremental rotation matrix */ Rot3 rodriguez(const Vector& w, double theta); /** * Rodriguez' formula to compute an incremental rotation matrix * @param v a vector of incremental roll,pitch,yaw * @return incremental rotation matrix */ Rot3 rodriguez(const Vector& v); /** * Rodriguez' formula to compute an incremental rotation matrix * @param wx * @param wy * @param wz * @return incremental rotation matrix */ inline Rot3 rodriguez(double wx, double wy, double wz) { return rodriguez(Vector_(3,wx,wy,wz));} /** return DOF, dimensionality of tangent space */ inline size_t dim(const Rot3&) { return 3; } // Exponential map at identity - create a rotation from canonical coordinates // using Rodriguez' formula template<> inline Rot3 expmap(const Vector& v) { if(zero(v)) return Rot3(); else return rodriguez(v); } // Log map at identity - return the canonical coordinates of this rotation inline Vector logmap(const Rot3& R) { double tr = R.r1().x()+R.r2().y()+R.r3().z(); if (tr==3.0) return ones(3); // todo: identity? if (tr==-1.0) throw std::domain_error("Rot3::log: trace == -1 not yet handled :-(");; double theta = acos((tr-1.0)/2.0); return (theta/2.0/sin(theta))*Vector_(3, R.r2().z()-R.r3().y(), R.r3().x()-R.r1().z(), R.r1().y()-R.r2().x()); } // Compose two rotations inline Rot3 compose(const Rot3& R1, const Rot3& R2) { return Rot3(R1.matrix() * R2.matrix()); } // Find the inverse rotation R^T s.t. inverse(R)*R = Rot3() inline Rot3 inverse(const Rot3& R) { return Rot3( R.r1().x(), R.r1().y(), R.r1().z(), R.r2().x(), R.r2().y(), R.r2().z(), R.r3().x(), R.r3().y(), R.r3().z()); } /** * Update Rotation with incremental rotation * @param v a vector of incremental roll,pitch,yaw * @param R a rotated frame * @return incremental rotation matrix */ //Rot3 exp(const Rot3& R, const Vector& v); /** * @param a rotation R * @param a rotation S * @return log(S*R'), i.e. canonical coordinates of between(R,S) */ //Vector log(const Rot3& R, const Rot3& S); /** * rotate point from rotated coordinate frame to * world = R*p */ Point3 rotate(const Rot3& R, const Point3& p); inline Point3 operator*(const Rot3& R, const Point3& p) { return rotate(R,p); } Matrix Drotate1(const Rot3& R, const Point3& p); Matrix Drotate2(const Rot3& R); // does not depend on p ! /** * rotate point from world to rotated * frame = R'*p */ Point3 unrotate(const Rot3& R, const Point3& p); Matrix Dunrotate1(const Rot3& R, const Point3& p); Matrix Dunrotate2(const Rot3& R); // does not depend on p ! /** * compose two rotations i.e., R=R1*R2 */ //Rot3 compose (const Rot3& R1, const Rot3& R2); Matrix Dcompose1(const Rot3& R1, const Rot3& R2); Matrix Dcompose2(const Rot3& R1, const Rot3& R2); /** * Return relative rotation D s.t. R2=D*R1, i.e. D=R2*R1' */ //Rot3 between (const Rot3& R1, const Rot3& R2); Matrix Dbetween1(const Rot3& R1, const Rot3& R2); Matrix Dbetween2(const Rot3& R1, const Rot3& R2); /** * [RQ] receives a 3 by 3 matrix and returns an upper triangular matrix R * and 3 rotation angles corresponding to the rotation matrix Q=Qz'*Qy'*Qx' * such that A = R*Q = R*Qz'*Qy'*Qx'. When A is a rotation matrix, R will * be the identity and Q is a yaw-pitch-roll decomposition of A. * The implementation uses Givens rotations and is based on Hartley-Zisserman. * @param a 3 by 3 matrix A=RQ * @return an upper triangular matrix R * @return a vector [thetax, thetay, thetaz] in radians. */ std::pair RQ(const Matrix& A); }