%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert % @author Chris Beall % @author Vadim Indelman % @author Can Erdogan %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have full odometry for measurements % - The robot is on a grid, moving 2 meters each step %% Create graph container and add factors to it graph = NonlinearFactorGraph; %% Add prior import gtsam.* % gaussian for prior priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph %% Add odometry import gtsam.* % general noisemodel for odometry odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise)); graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise)); %% Add measurements import gtsam.* % general noisemodel for measurements measurementNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]); % print graph.print('full graph'); %% Initialize to noisy points import gtsam.* initialEstimate = Values; initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1)); initialEstimate.print('initial estimate'); %% set up solver, choose ordering and optimize params = DoglegParams; params.setAbsoluteErrorTol(1e-15); params.setRelativeErrorTol(1e-15); params.setVerbosity('ERROR'); params.setVerbosityDL('VERBOSE'); params.setOrdering(graph.orderingCOLAMD(initialEstimate)); optimizer = DoglegOptimizer(graph, initialEstimate, params); result = optimizer.optimizeSafely(); result.print('final result'); %% Get the corresponding dense matrix ord = graph.orderingCOLAMD(result); gfg = graph.linearize(result,ord); denseAb = gfg.denseJacobian; %% Get sparse matrix A and RHS b IJS = gfg.sparseJacobian_(); Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:)); A = Ab(:,1:end-1); b = full(Ab(:,end)); clf spy(A); title('Non-zero entries in measurement Jacobian');