/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactor.h * @brief Basic bearing factor from 2D measurement * @author Chris Beall * @author Luca Carlone * @author Zsolt Kira */ #pragma once #include #include #include #include #include #include #include #include namespace gtsam { class SmartProjectionFactorState; /** * The calibration is known here. * @addtogroup SLAM */ template class SmartProjectionFactor: public NonlinearFactor { protected: // Keep a copy of measurement and calibration for I/O std::vector measured_; ///< 2D measurement for each of the m views const SharedNoiseModel noise_; ///< noise model used ///< (important that the order is the same as the keys that we use to create the factor) boost::shared_ptr K_; ///< shared pointer to calibration object boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame boost::shared_ptr state_; mutable Point3 point_; // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NonlinearFactor Base; /// shorthand for this class typedef SmartProjectionFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// Default constructor SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} /** * Constructor * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(const std::vector measured, const SharedNoiseModel& model, std::vector poseKeys, const boost::shared_ptr& K, boost::optional body_P_sensor = boost::none, boost::shared_ptr state = boost::shared_ptr()) : measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor), state_(state), throwCheirality_(false), verboseCheirality_(false) { keys_.assign(poseKeys.begin(), poseKeys.end()); } /** * Constructor with exception-handling flags * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param K shared pointer to the constant calibration * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(const std::vector measured, const SharedNoiseModel& model, std::vector poseKeys, const boost::shared_ptr& K, bool throwCheirality, bool verboseCheirality, boost::optional body_P_sensor = boost::none, boost::shared_ptr state = boost::shared_ptr()) : measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor), state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} /** * Constructor with exception-handling flags * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param K shared pointer to the constant calibration */ SmartProjectionFactor(const SharedNoiseModel& model, const boost::shared_ptr& K, boost::optional body_P_sensor = boost::none, boost::shared_ptr state = boost::shared_ptr()) : noise_(model), K_(K), body_P_sensor_(body_P_sensor), state_(state) { } /** Virtual destructor */ virtual ~SmartProjectionFactor() {} /// @return a deep copy of this factor // virtual gtsam::NonlinearFactor::shared_ptr clone() const { // return boost::static_pointer_cast( // gtsam::NonlinearFactor::shared_ptr(new This(*this))); } /** * add * @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement) * @param poseKey is the index corresponding to the camera observing the same landmark */ void add(const Point2 measured, const Key poseKey) { measured_.push_back(measured); keys_.push_back(poseKey); } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "SmartProjectionFactor, z = "; BOOST_FOREACH(const Point2& p, measured_) { std::cout << "measurement, p = "<< p << std::endl; } if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); bool areMeasurementsEqual = true; for(size_t i = 0; i < measured_.size(); i++) { if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false) areMeasurementsEqual = false; break; } return e && Base::equals(p, tol) && areMeasurementsEqual && this->K_->equals(*e->K_, tol) && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// get the dimension of the factor (number of rows on linearization) virtual size_t dim() const { return 6*keys_.size(); } /// linearize returns a Hessianfactor that is an approximation of error(p) virtual boost::shared_ptr linearize(const Values& values) const { bool blockwise = false; bool degenerate = false; int dim_landmark = 3; unsigned int numKeys = keys_.size(); std::vector js; std::vector Gs(numKeys*(numKeys+1)/2); std::vector gs(numKeys); double f=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { if(body_P_sensor_) cameraPoses.push_back(values.at(k).compose(*body_P_sensor_)); else cameraPoses.push_back(values.at(k)); } // We triangulate the 3D position of the landmark try { point_ = triangulatePoint3(cameraPoses, measured_, *K_); } catch( TriangulationUnderconstrainedException& e) { // point is triangulated at infinity //std::cout << e.what() << std::end; degenerate = true; dim_landmark = 2; } catch( TriangulationCheiralityException& e) { // point is behind one of the cameras, turn factor off by setting everything to 0 //std::cout << e.what() << std::end; BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); BOOST_FOREACH(Vector& v, gs) v = zero(6); return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); } if (blockwise){ // ========================================================================================================== std::vector Hx(numKeys); std::vector Hl(numKeys); std::vector b(numKeys); for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); b.at(i) = - ( camera.project(point_,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector(); noise_-> WhitenSystem(Hx.at(i), Hl.at(i), b.at(i)); f += b.at(i).squaredNorm(); } // Shur complement trick // Allocate m^2 matrix blocks std::vector< std::vector > Hxl(keys_.size(), std::vector( keys_.size())); // Allocate inv(Hl'Hl) Matrix3 C = zeros(3,3); for(size_t i1 = 0; i1 < keys_.size(); i1++) { C.noalias() += Hl.at(i1).transpose() * Hl.at(i1); } Matrix3 Cinv = C.inverse(); // this is very important: without eval, because of eigen aliasing the results will be incorrect // Calculate sub blocks for(size_t i1 = 0; i1 < keys_.size(); i1++) { for(size_t i2 = 0; i2 < keys_.size(); i2++) { // we only need the upper triangular entries Hxl[i1][i2].noalias() = Hx.at(i1).transpose() * Hl.at(i1) * Cinv * Hl.at(i2).transpose(); } } // Populate Gs and gs int GsCount = 0; for(size_t i1 = 0; i1 < numKeys; i1++) { gs.at(i1).noalias() = Hx.at(i1).transpose() * b.at(i1); for(size_t i2 = 0; i2 < numKeys; i2++) { gs.at(i1).noalias() -= Hxl[i1][i2] * b.at(i2); if (i2 == i1){ Gs.at(GsCount).noalias() = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2); GsCount++; } if (i2 > i1) { Gs.at(GsCount).noalias() = - Hxl[i1][i2] * Hx.at(i2); GsCount++; } } } } if (blockwise == false){ // version with full matrix multiplication // ========================================================================================================== Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys); Matrix Hl2 = zeros(2 * numKeys, dim_landmark); Vector b2 = zero(2 * numKeys); if(degenerate){ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); if(i==0){ // first pose point_ = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity std::cout << "point_ " << point_<< std::endl; } Matrix Hxi, Hli; Vector bi = -( camera.projectPointAtInfinity(point_,Hxi,Hli) - measured_.at(i) ).vector(); noise_-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 2 ) = Hli; subInsert(b2,bi,2*i); } } else{ std::cout << "non degenerate " << point_<< std::endl; for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); Matrix Hxi, Hli; Vector bi = -( camera.project(point_,Hxi,Hli) - measured_.at(i) ).vector(); noise_-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 3 ) = Hli; subInsert(b2,bi,2*i); } } // Shur complement trick Matrix H(6 * numKeys, 6 * numKeys); Matrix3 C2 = (Hl2.transpose() * Hl2).inverse(); H = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2)))); Vector gs_vector = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2)))); // Populate Gs and gs int GsCount2 = 0; for(size_t i1 = 0; i1 < numKeys; i1++) { gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6); for(size_t i2 = 0; i2 < numKeys; i2++) { if (i2 >= i1) { Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6); GsCount2++; } } } } // ========================================================================================================== return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); } /** * Calculate the error of the factor. * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. */ virtual double error(const Values& values) const { if (this->active(values)) { double overallError=0; bool degenerate = false; std::cout << "evaluating error in smart factor " << std::endl; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { if(body_P_sensor_) cameraPoses.push_back(values.at(k).compose(*body_P_sensor_)); else cameraPoses.push_back(values.at(k)); } // We triangulate the 3D position of the landmark try { point_ = triangulatePoint3(cameraPoses, measured_, *K_); } catch( TriangulationCheiralityException& e) { std::cout << "TriangulationCheiralityException " << std::endl; // point is behind one of the cameras, turn factor off by setting everything to 0 //std::cout << e.what() << std::end; return 0.0; } catch( TriangulationUnderconstrainedException& e) { // point is triangulated at infinity //std::cout << e.what() << std::endl; degenerate = true; } std::cout << "degenerate " << degenerate << std::endl; if(degenerate){ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); if(i==0){ // first pose point_ = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity std::cout << "point_ " << point_<< std::endl; } Point2 reprojectionError(camera.projectPointAtInfinity(point_) - measured_.at(i)); overallError += noise_->distance( reprojectionError.vector() ); } return overallError; } else{ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); Point2 reprojectionError(camera.project(point_) - measured_.at(i)); overallError += noise_->distance( reprojectionError.vector() ); } return overallError; } } else { // else of active flag return 0.0; } } /** return the measurements */ const Vector& measured() const { return measured_; } /** return the noise model */ const SharedNoiseModel& noise() const { return noise_; } /** return the landmark */ boost::optional point() const { return point_; } /** return the calibration object */ inline const boost::shared_ptr calibration() const { return K_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(K_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } }; /** * Structure for storing some state memory, used to speed up optimization * @addtogroup SLAM */ class SmartProjectionFactorState { public: // Landmark key Key landmarkKey_; // Set of involved pose keys std::list poseKeys_; // Linearization point Values values_; // inv(C) Matrix3 Cinv_; // E // W // Hessian Matrix H_; }; } // \ namespace gtsam