(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 54965, 1320] NotebookOptionsPosition[ 53236, 1254] NotebookOutlinePosition[ 53591, 1270] CellTagsIndexPosition[ 53548, 1267] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Rot3", "Title", CellChangeTimes->{{3.53503261234345*^9, 3.535032616575417*^9}}], Cell["Taylor Expansion in Logmap", "Subsubtitle", CellChangeTimes->{{3.53503257044002*^9, 3.535032603813589*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Series", "[", RowBox[{ RowBox[{"t", "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"Sin", "[", "t", "]"}]}], ")"}]}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "3"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.53494959325854*^9, 3.5349495996148577`*^9}, { 3.534949645480898*^9, 3.534949695346019*^9}, {3.5349519201240377`*^9, 3.534951920202557*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox[ SuperscriptBox["t", "2"], "12"], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", "t", "]"}], "4"], SeriesData[$CellContext`t, 0, {}, 0, 4, 1], Editable->False]}], SeriesData[$CellContext`t, 0, { Rational[1, 2], 0, Rational[1, 12]}, 0, 4, 1], Editable->False]], "Output", CellChangeTimes->{{3.534949687074999*^9, 3.5349496959309673`*^9}, 3.534951921216683*^9, 3.535032674514707*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", FractionBox[ SuperscriptBox["t", "2"], "12"], "-", RowBox[{"t", "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"Sin", "[", "t", "]"}]}], ")"}]}]}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ",", SuperscriptBox["10", RowBox[{"-", "4"}]]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.5349519227655277`*^9, 3.534952059744272*^9}, { 3.534952158494419*^9, 3.5349521906793823`*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDwBWIQvfKAxs1HZlL7GaBAaoEO91EjBL+r3sB2uR6Mv2BP jp3Fwmw1hLzBHvfML6II+W3b036yfpWEyx9at0RSczOMv8Dm1hyFqHx9hLzc x7X3LwlKwPnGgVGbldnFEeq7F+1ZzygGl59i13BK6JkIXF7+b41a8l1huPxe Y/72rn1CcP4bF1vZt0sEEfzELkbbeQJw9/57e/PKcSZ+uPwx/btOH97xwOU3 qknI9D/lQviHt+7f7fUccPtLeZRqmRewweX9fn9guZnMApf3mv/9u4oRE1z+ RZRNu7caA9z8MN4Ie4c7v/fB+ApTNq+Yt/37Pph6s98pKpFWn2HyNiozud8y LHkLl0+Z5cq0K+spnF+xI6wijOEmnJ/zSXWO9JYDcP7J4jOcco/228H4rzcu 7Fyz9iaCfyQ//J/kUzjf40OSax7fOzi/d7G1c1POZzh/03xPbYm273B+925G xqAfv+F8gSty/tn8DPYwvrloq5G5BBOcb5F2gCfUl8Ue5r/p8/d6zYhhg/Mv vOiv153BAVefLqUi8WItF5x/e1qDq85OHjhfU3lT5qEPfHD+69OXftg1CsD5 enzmO1wXCML5D0r/OwruEoLzD15cUfv+gDCc3791z5Zvd0Vg7tnT07txrsAL Ubj89y6uwPdvxOB8f4Fz/7+xS8D51zqLEgQFJOH8jUmhy9aISCLMs7Z44y6J kHd++7e8TgnB3xDQ2f/aBMHvFl+w72gkgu+w9KxM1WIEX7puQ5LoCgT/W9jk FRvWIOxbyxFp8nwrgi+V88Q75ARC/Rej31V6bxH889z3Dpz8iOCvenKALfUb gp84rW3S7P8I/rmfgqs4hKQQ6i99eb9YTAoen62rr5vaS8P5e2xi5x4sVUGo FzdrYBfURPA/8SX7rtFF8M89d53sboTgQ8svOB8Aw5IwBQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->NCache[{{ Rational[-1, 10000], Rational[1, 10000]}, {-1.1102230246251565`*^-16, 1.1102230246251565`*^-16}}, {{-0.0001, 0.0001}, {-1.1102230246251565`*^-16, 1.1102230246251565`*^-16}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.534951942222381*^9, 3.534952060527275*^9}, { 3.534952162599*^9, 3.534952191138659*^9}, 3.5350326747077627`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{ RowBox[{"(", RowBox[{"t", "-", "1"}], ")"}], "/", "2"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "2.999", ",", "3"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.534952571728985*^9, 3.534952573574695*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwd03s403sYAHCJmLScXKJ0dE8zzBSnyKtDirJTISXMyGXJJTSRRTtlUglj MbffoaQRndK9kJLbcUnrLqyTVnFEWq3czvfbH+/zPp/n/ed93+d9F/lHbA9U VlJSCkOBM8PD6drohJr9/gXef6pbELCCFdmLnTG74n4gjQClMJH6F2S2ec5E vTkBV44OeWGPDq/35ZoRoF8tnMIOiHjYNWJCwJs5sk1fkZPbP/BfLCeA08l/ pUCuZTotOGtIQNHmZqVJZOnfa5qXqRNgoPPOmDSpZq+WH2B1/VoR+HTcFWgj ywtetJj4F0Fq1IaWBciVjm3ZbHIRSGVBPcbIbu1VFScuF8K0rQ6rLZHLzOkn JLsLwSX1JtsO+bNvuaR2vAC4Fb1sZ+Ssabcs7QoLIO5eXYUbcmHqxqLpGwqg qMymzRfZei3jisa/+ZDG209jI9sullbvSc6HYEdPZjTysRc9AjYlH9jPn4Ye Rn5Ilro5NuTBauYvt1OQh5JWaQsC84Byo18mQO49P7dt17gI1L+z+wqR7e4X jcUKRHCJemH+BWQFa5qlKU0ER+i8VdXIIzKWb2t9Lhia6KXXIMddp6WQdudC n9yhuRn5TWfmwur3OXCqbFG7BHnzzqvyUE4OqDBu6fYi25wW6PeTcuBsw+Da j8g65bbbZ2SeATLtZfEX5LQA14SPRmeAxYt9Oonnd2GY9F4UQk9ppYw0pWa/ ssK497S5EJbWEDY6yHXFmevmXc8GwXlqmBFy3DnqCr5FNgweDNlLQa6gykcM y7OAvI4pXoWcc3yUEFKywOvxp0ZAfuajkHHzBBDhbWPsgqxlnuC6aI4Awtus 3N2R9/EfexfwM0Go9Y8PE9lxW1VG9mAGpDgZitnIn84/XDbbMwNKGDMkMchV ohnp5Kp04DuX2ycibxmPzB2bmQ4eVKW448jzGv7INGpNgy3SobQs5A5lRWXo tlMw63iOrBDZtYgvfttzAr4pdy8QI7sNaLUyrFKhdU+H0VVkxu3njSlxKRBy k7unFrmZeVI+504ymPU1JLcgXzTWapFWHoWa700DEmSf6SnRsek8sB47ZNiL TGqYq5X0WxIkm13dhF2nCMjIMk0CCWso5qevdVX+tTgJopr82n56/OSRc5pJ UJG94XAfsu76kNKSukRYSJvdJ8X7qiot99FMBPXA4pK3yIaWVmVyIRd25Lzq wG6OvLRaOZEL51p1xrF/6BL2Y0Fc+J3Od+9HPnyXSr5sxYWEqVDVd7i+5qae 6ZMEGMldHSxDnuwa51PICfCyvYnyEdk63NMyPzwevvyn6Y4dFOyXle0RD+RZ 27jYjyWxerG28bB+84sO7Po3NuwRUjyUNX6IGUB2jtIPv10SBwfqNGoHkQ0c qtxYXQdB6/IWt0/IOznS+kMGsUB5lJ6A3SrrF0vGOeA4LDmHzckJqSL1cSDW zEeBPSqp+aBayoEecVjBMLL9ne0saxoHykvSZCPI997/yhi1PQBO2Z2HviCT 7XI/7qNHw5Kt0gvYJudXeEtnRoPSzM/PsC0DzlLV+qPgVpL2KjlyF82BzhRG gem+HYPYcorf/Bny/aDj0O39Dfn7WPBOFSISRiYGU7GLVeVro6Mjof3GxA1s rRJr3RCnSEgxM9JV4Huaej1Q+iQCxgz827B7XqpGBHiFw5th2bof+F9udmpr Lg+F2nJFKHaYo6bjmRt7IT+IJMKedSegxst5L+zopnzFZqaMENRANjQ3hlWO 4f6IAuMBXjCU8g53Y9Pu6jXRVIKBt+60xji+94bpiy/ygsD2yqUgbNuVYotE TiBcKhz9dQJZMde7PYweAKd2qbhi58UuXeMn9Ie9OrqHsK8ct3dSk7NgSarV M2yGjX6HKuEHShs2qk4iL+2Lo4ifMKF7ytMSe3+xtkqwly8ID8Sdxjb2JoVp Ld8N0bTUu9igTA+3CNwFWwdEA9j8iuncYZ4nmJaWG0whixY5UI5xPECDdWcj tkvpQVEM3Q1k89sOYD+hMh7MIrbCg6evS7DnxXydv3T5ZiAyhh5hE51monS6 A3C3TE1hU34Q8eLPXXb/A6YwSmI= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{2.999, 0}, PlotRange->{{2.999, 3}, {0., 0.031624094042906566`}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.5349525739053583`*^9, 3.5350326747659903`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"exp", "=", RowBox[{ RowBox[{ RowBox[{"ArcCos", "[", RowBox[{ RowBox[{"(", RowBox[{"t", "-", "1"}], ")"}], "/", "2"}], "]"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"Sin", "[", RowBox[{"ArcCos", "[", RowBox[{ RowBox[{"(", RowBox[{"t", "-", "1"}], ")"}], "/", "2"}], "]"}], "]"}]}], ")"}]}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.5349524147561817`*^9, 3.534952440599073*^9}}], Cell[BoxData[ FractionBox[ RowBox[{"ArcCos", "[", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "t"}], ")"}]}], "]"}], SqrtBox[ RowBox[{"3", "+", RowBox[{"2", " ", "t"}], "-", SuperscriptBox["t", "2"]}]]]], "Output", CellChangeTimes->{{3.5349524185902843`*^9, 3.534952440931364*^9}, 3.53495257882157*^9, 3.535032674837762*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Series", "[", RowBox[{"exp", ",", RowBox[{"{", RowBox[{"t", ",", "3", ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.534952442827351*^9, 3.534952504096322*^9}}], Cell[BoxData[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], RowBox[{"Floor", "[", RowBox[{"-", FractionBox[ RowBox[{"Arg", "[", RowBox[{ RowBox[{"-", "3"}], "+", "t"}], "]"}], RowBox[{"2", " ", "\[Pi]"}]]}], "]"}]], " ", RowBox[{"(", InterpretationBox[ RowBox[{ FractionBox["1", "2"], "-", FractionBox[ RowBox[{"t", "-", "3"}], "12"], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", RowBox[{"t", "-", "3"}], "]"}], "2"], SeriesData[$CellContext`t, 3, {}, 0, 4, 2], Editable->False]}], SeriesData[$CellContext`t, 3, { Rational[1, 2], 0, Rational[-1, 12]}, 0, 4, 2], Editable->False], ")"}]}]], "Output", CellChangeTimes->{{3.534952468159314*^9, 3.534952504519527*^9}, 3.5349525813815613`*^9, 3.535032675341729*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"exp", "-", RowBox[{"(", RowBox[{ FractionBox["1", "2"], "-", FractionBox[ RowBox[{"t", "-", "3"}], "12"]}], ")"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"3", "-", SuperscriptBox["10", RowBox[{"-", "5"}]]}], ",", "3"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.5349523003273087`*^9, 3.5349523851505747`*^9}, { 3.53495248711434*^9, 3.534952536039465*^9}, {3.534952588798771*^9, 3.534952638528079*^9}, {3.534952687358019*^9, 3.53495271171415*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxNl3dczv33xy8hm8gmMm5bkmyHpFsh2VvpThIqDSpFXaU9dLWudl3V1S5a knQI2TtJKCU7KwnZP98/Pq9+f/F8nHNeZ7zP+/25GmGyd/UOBZFIZN5eJPrf v6EJFWe//+mk9fe/opVhcp74j+N5gXNTk/l8psoFgUUFu2iL+vmLAou/ePGn 4+aXBdZalMj+c3teFdi4QsKjzhZcg7/8EJ9avOkG9PQO8Jrrv2+CJ/rzm1Xy 2/CfG8eH7y+pgP2JFQ8x/HBXYMnYJC5oCLsH/5wYXmY+577AZVYx/PRdXTX6 uZHIznaeD6H3dDsrf5tQI3C9Vwxr2/eqRbzEja0/fQKLOrhQgnX1Y/QXFss3 35XWwX9hMP/anViPfJflNOmV5xPELzHmzTt2N4BTDcm3weAp6s/MpOJt057B vvw/elEz4Dn44Xrut/kneOXaFNK5X/8C8cMlbLf2wkucB8Vw0p2MV6jvjjvd NjjyGnqPnPjPNdtG9G8YxWpLNryBPdOKtl6c+xb2oHjyX6T6DnYbGyop6/Ae 8xgUTa/pNVg1J5UGnrrxAfmHeNPiWflNsF+Jov3HpR8FVj+XRHIN52bom+7l imPbPoEVzajdZJ0WcLozqWeO+4x+h7jRtrE9vsAeksJH5B/B4m/WVDqi6ivs +7bwm/iS1rZ98eDrK3d8B08/zNkKSj/b5hXMAYUlv9r6kZCl2Y4/qD9ZTgYD ldr9EPwdD5Da1RIFgcW+/tTz4I4OAmv5+tCHyUqK8F9pSLfrSjoJbBwazLnB O7rAvsWeJIuUuglcVh1KNp9LugssGx9Fq9N29ASLw0ljk5IS4tPdqE+3U73B V335U+kOZYFzH6TwQKXO/aAvd+d52zP7ox5bCRkX6Q8Ex4ewR5cPg+B/wIPT twYPQb8jPfnGsWkqYGMZNStUDYP/h0Dqv95RFfUs8uY5GYNHggfak9HP0lGY V60/ua/Y9g/ih/tTWlK7sdB3t6Hrn5PHwb7Cn5v0Fk+AXpkP9Y19NRH1y+Jo 1ge/ybD3OMKT71qqYX4u2TTyxMop4AlhNCBmmjrqWR3K3V37T0W8k5jbbf8G Xnk+k74srtFAfS6O1DjhzDT4X3anup5JmqgnJ4Urmz2mQ3+UmC5X7ZwB/7N7 iEuWzkQ9demUHz95Fvpd7M9p7kqzBVYdF82xZp/AZdE+FLy0ag70B6STl9rJ uajvQgw594mdBy63JesvLiSwZKuMdjz8bz5YOYc2n9ZZAP2hMbQiaawW4p2c WMer60LYL3vS7N3vwLJLUaRmcFsb/l+DeJRGwSJwzAEe2F+qg/41F1KP747/ ClzvnEMKj7cshr3uAH09O18XfGU/vU0ZoQeesJXqfTssAZva8j3Ll+CVm+Wk /e7IMthrQ+moxYzlqKfIg4e8rTWAXc+WfPZ4rkR/Jh70uXHSatifHyCT3ZVr wO5OfOu18zrwmDiet2vUBuiXOXLGq6sbYS84RP3NbTfjvAy8yf3loK3wv3uA PpidNUR+czFvfWG+DfNtkdLlHUr/wX+TJ09/fsJE4CafbEoy3WaKfEds6NRj nR3Yn0dpXLlxghnyT3WjdxW9dkKvqxMpLv8MFrVuouGXHpqDlznyrIVlu7Df 4RJefSplN7gpivZM998jsHWXNPY4Zm2BfAvdOX78ekvkU4qiE8lzrdreh/l0 W2XEXuxD/zh6HaFoLfBthyxS6PMWXF8dTkMC7thgXnMCWFPxhC30dHfTcnGs HeprCCaz72772u5nHLnu27kfXBTMke/17aGn7s155hoOYOV0utowwBH6xq78 bOsvsJatB/+qajggsFKInPqvuuyE+EAZqV/LcYb/TCkt+Tf0IObRKCaTM46H oL9RzM6zjVzAR2M4rGCRK/xVnCln8ngxeGYyXUzr6Qb/HA9ya/4Alm2Mpnl0 xx37sCuYv3rnH4Z/vjPnV4R6gLsvJUuV/Z5gdQcaZ77eC9xFTE/zZ3rjvj1N 5/hfA33a7rs1bdL73sZ5WdQ39JEv+s/25Fu1pX6oz0PKfuPi/eHvGEb/2rkG 4PyNjpLotHEgzv+uhE911j4CfpDM9mtGBaE+RVeeGt9BAj3bcHr76jlYK+sw p027FIx5/EhhE5f0ENSjEsEqV3xDEb87k6qV94ThPL08KNRIPxzfW2kiG2RM liK/toy6tPSMAJckU/n8pjbuEMiuvnciUY+dH8+pzI+C/uFA/jwsLBr6QcmU u2t/DOw/E8iicH0s6u0gpbF/ZsbBHpbOqvo18egvUUKDo8Qy5LcIIOUXo5PA PkbUfdqV5LbvYRh3FFumwD70AP2+3jsN+p0j6OugonTMp3ccN5ltzgRX//39 WPA7CyzzpwZRcg70Drjzo+W6x6A36e/3MvpNLr5HMhndeBmUD770d781NQvR z5kILnOrPg5WktLJmwdPYB9bsynymHEx8l0wZ0eJzknwmkO8wWZcCfrtG8gz Vnc/hX0qieT+05rA4sFS+qxcWYr4RgeqbDnBiF/ux4X3Yk7D/3EkhRa5noG/ WI1tI7aXQb8hgVY76p6FXa5HUzdNPAe91mhSmtPrPPSMPLhp8Kc2Hu5Bt35U leO9DZPx0ZqSC9B/HsKBHH8R+q6ZZBHvfgksWkz6rmaXwT8caKLx0iuIn53J XReqXYV9lws1juhzDTx4L11R+AJW6pRD6U8fXMd5zvVl73K+Ad4TxWYpiTfR 35VQWuzleQt6Tcvpn527bsM+QE4d9JbfafveHqFn46ZWoH9XXz7fpd9d1NuY wkmNrWBxqoSfbU+6B72wKP6ndtl96JlKyGz952rYo/05/Vb8Q8T/dqZGPb2a tvcvmCae+1iL721sKlvMjamD/zB7Olqo8wT97pZw0+T3DYhX8aOpaRHP4F+T QLaqC1/g++Ms5cKoxpewL4riL33CXqO+8xE0K4DeQC92ETt1fPkW9sZoOuUi eY/82qGsFTW1CfdjeThfLKj4iHiDOFp20+4T8u3N5tuv+n7GezIphte3L/oC /0RXfqSyobVtHvpkPKv1W9v7sYxfrI76gfxb/NjCcs4v5C+IoY/ej35jX3rk kH3SQdFPIf8zf/pZqqIgcP3oCHK7f7q9wKpF4aTYvK2jwFrTDlNA93adEO/s x73HJnUWuCwnmIqsPLoILFOR0tYis64Ci3ZGULvfet2g7xNOqf9O7A49Fwnp B/bogXzBYvpY+QEsenqUpEMreiJfXjDPMy3shXwecdSQJVWCfYIbeX9y7A0e GcST5m7pA//ZUqpwJ2Xop4nZ8erwvuAJEaTSR6GfwMbnMujcpmdgUaYXmSde 7C/w7UwZ9XydPgD5sv24QN1/IPxnm9BGR8tBsFsF0u8zKwZjHq0RJO+kMQTc KZ6WrOg7FGwjo/fSL+DcRTIKe1ytgn5aYmnOmFPD4D9WSnWWccMx3y+Z7HHc VRX1lK3mCb/+GwH++3vslo7OSOidTeJ9AWNGIf6sPQ2u7Dwa+xIdxmeGvAGr D8zgAJPgMfC/uY83Z8wch35jYmlcU+14nG//IP4yw2Mi8jvbcPmhCZPBarYc Un5bDf6qEjbu5qAOfYVYUlutogEuP8A/I89PQ/zjQLpat2s6zu9FJEWOUZqJ enZEkJll0SzEl3qQZuHWOcjnEsAKPxTmgZ2C6fbCDBJ4ZW0SxfmsWCCwZHYa mZlpaiF/rZTUdQYtBJdY8/cRv8GSRzIq/9OgDXv9BD5Se2kRuDGeNpzK1kF9 NYdZNSr4X9R/PoAa7e0Xw56WSIVrt+ii3sYgdtHQ0oOemRHrKf2zBHZnN+r9 vstS6L0KoofX3rfxqVCSZ9xdhvjeYWTlXawP+0cJzdoRtxz2Ex6ksMjdoK0f DbqmunMF2M2Pw34vW4nzWBbPRjXqq6CXFULjSvqthr/+fm6O+A62Nkui0v11 a9CvlgN5rilfi/3zlpPB1Ix1iF9qTgN7HVmPfrcmUMNb2w1gB3/OvrphI/y9 Xcg+fd4m7LdPFC3wGrEZ9hnx3NlUcQvqXRPKFQvftPFjb57fdG1rW7+2nBGf bShw09486rs80Ah241Es/mG5DdzZnN9mGBijPy933rBxyn+otymEzykqmcBu lExqx5vA9TpSit5+Zzv07ptQxz75pvD/kU7WZSE7MH+NCKqxsjOD/+SDrKey difu/654Krymad72fjixqlO/Xcj3JoL8x31pY7Uw/lJVtRt6Yy3JxPPEHsyn TyTdnBZpgffJNZ7nNDhawv+LhFMlm6yQz9yZey+Ys1fgyJd5dPDdYGv4bzKn VzE/2tjFjNYurbEBW+vzmdZSW+iNEPOEtDg71FsSwtJ1LvvQb0YyKXTYth/2 k+Fkmb/AHu875VO1saoD9LtEsk6vdo6I1w2j+FHyA+g3X8qtM3Wd4d91P6/W bzwIFrejHONAF4GVfHOp8351MertG80mvnfdoLc+iErj7A+3zTeW++cP8sR+ XPVk64ulXrBnO/DVh9t8oBfqx6M/KPjh/fGVsUv7VH/YPdyoesCSQJzPuGTS mPT2SNt7FsIBWkES5LMM4JdrNUJg7yFl+6h+odC7FEuKj1vBIvs1JB1ZE4b4 AfE8ZueZcPQXd5iKspKk2M/mWF7c5BmB+P6WVKW5KxL3famMzA7oRyHeNJi/ 8JTotu+zNXkpKMfgPHtIqb/uF7DWiCRK8X8Qi3iTNNK8XRoHu7KUy/vK4hHf K5TXbjqcAP1LofwszkwG/7mRvK9hSSL8Z8q4w9jJSZhHcgKF7VFKRvynIBqV +6mNb+zh/JYqOeZ/Mpq1Z5ekQD/s7++VQ3GpYGsxm5wTp2Ee92TUrGiaDr13 tuy+TDcD/eXGUR/JhEzEb5ZwUmWPLNiHeZLGoI9g2WMZnTOszIZ/RQSvTjqR g35sxPzkRfRR5KuzII+xi3Jhb7blMeZv8hC/K5qvpIcWgIdJyOL13ON4H/+R cc8Jz4ra3msJ5+0OKBb4snIurc3SLIF+WCR/eVNzCvM6GEeRkzwZ8W5inms5 +Qzub0UOP865Vwb7fhmJ3x86h/rlMho1ZUw59i8why/uvXkB9jXObJ5rfwnz biejbh+HXcG8DKRcdq3DVehbePC+1EawqMGYx7ndvgYu2kY1W4qugy2NSTIj 9gZYYsQ6vd1vgqsPc+ubnbeQ73c4Z19cfhv9DUoh48Rpd/7/vvc9OKgC8Uf+ 48vr/7RxUDwfnPr8LvxTgkm9+7VK6P/9e/bZi9x7mIduOEWelVbBXxzB+rEH 76PfyW4kcjCpxnmuTaLCVXoP4O8dxuaT1B4i/7NFPLRT30fYv/1H6PaTb2CZ Qgx5lNbVtO1rIs2KuFCL8x+TTG9tsh6jvmdJJNMPrsN7GiKjtWMd6uG/JZI6 Kxg+Qb4qLyqt0W6A/Yw9W58Y9xT1fovm0SE9nyF/fRxVW7SARdZTKVD34XP0 65xODc2nXqCe1GiaFR/3Ev5N6nRkiesr2KfF87MW49ewjwyhOTLtRuyzTRhL lo1+A/vHUHrxpeNb1H8tmuclvQSL19hTyPIr71DPLxm9as18D3uPKJ4vD/jQ 9v7YctgKqyb0p+pNjd9XfER99yJIK3Vqs8C5nWQkXaX8CXaVJHr7swUsmpBE 2ulVLahvoowi1xR/xnkujKT3v6O+tN1/H9LJdP6KeCUbjl5n2Ao+FclNogXf EB+fSIuzVb+jnylOFLtB4QfqWRvNzQrPwKpO4aR39MJPcFEox29K+4XzbQ6l lg6+v1FvTBwvzd39B/lDDEm2RV/0C+97HH1RVGsnsKqjjPXzeykILMr1Z+ey wvYCr3yawpk3N3WE3XE7P6j5rQj2/ruPb5I7C5zrlkQzv+l1hf1yBpt1et8N +dVCKLxfaA/4m+RT+ahZvQSWGcbQp6m1SgKXPZHxSC33PtBzk/Iqg7F9BRbf Okrirdf7CSwpTqFju20GCDzQqoAfO/YfBPunJO7ufWow9E748txw46Fgux1c VKWjgvxJAaQ+cPww2JujKXNTj+GoNyKRRsd8BIvdkym+5p4q+puZTAOHlYxA /HEZhWyLHwn9pgjqnug+CvF/DpNXg9lozOuRmEWjl/0jsPGWBHbaMWUM9P7E 0+dU5bECj9MuIutXX8FlKUncOL5mHPRyvcl0T9l4gZVuyfhxtnwC9HKcaON7 n4noTzeFKqZYTkJ9PhLWt1k1Gfq3POhS/nQ19Nuczdotg6YIfPtnMpdO/w1W 9YnmGQ4N6tAPD+bc4otTobfMjyd8z9QAO/mxfG7QNPjXB/OwQ3aasCvHcOTp DdNht5RzH9G8GQI3/f19FbBQdSb89xwmxcMdZmGe14LZrfxVGw9JodbfIXMw j88ysp5N88C9D9NLu5cE/24JbHQ0eAHmY76Pql7NXQj7oihaPuqFNua/Jo7K DSU6sE8KpnmRcxajvngvLqx4pot5tSTRxB5BS8CGEZykO3sZ8tU78WD3p/rg vAMcXBpoILCjSj51/jpzJfJ/TSbx1IZV4Bh3/ronYI3APvfzOV9XbR30LG3Y atTt9cgfn8rj/9hsFLhYVkTPHipvhp5jMCUUHd8i8Kv2+bw5ZIMh+u0rof5W 34yg3+DGd5bEGAtcn5RGAf+QCfTKPVivXd12cJ0fta8V7xBYfV0Bny4euRN2 Ix86EFZuDr09x0nT2mw39vNPCjUt62yB/DUBnDU20xJsVcRvbwVYoV6VDJrk uHcvzueNP1uorraGfomEsi9r2mDf9VPorfUAW+RblsSTB30Ha30qIKuzNXbg m+58dNeZfdivqbv4fe+k/eDOhqxW4mEPPrqfrUx2OoC/+fOxrksdUa9PDDfl TzoA/a5prL6llxP4VgJZt28Giwp2U25WpTP604jnpjUnDqIfbxlN/Rl1COdd V0S28oMusNunUL7+NlfohXhyc8tCMfZlu4w04ka7Yb5jE9j2307u8HfYTgXv XoPrm/O4Jfz6YfCIdNacf8wDeifjeN+LYE/Y1SVceGSfF/TOunDLjA3eyPfJ mqfXzfbBe+BQTPbeQ31hH+PLRVP+gEXmkVwyM9Uf+Zyj+fSC5YHIp5nG53Rb jmCebmF0YUWMBHr78+jyBu0Q6J3ey9e3vQ7FfFvd6fZOSTj8j9tR5d6ZEeCr wVzt8DgS8bVp9MjVMxr81osfe0+KhV5tMDUE3Y1DfMc4ehHhlID38FE4NSaM SES8phW/T7ucBHv7dP54bK8c/XmV0Pr3a1PAw+O4ZNKcVJz3tTQavmd4GvTK i9kjo0M69j1cxq9evgarWsfQ8jG3MsDHCinftDAT9X//+/dsclQW9nduCjs9 ccmGfoAF1w03zcH59SlkHaMlR1HPtExOj1U7Bv/WOO7+SDkX+p382GbQN7D1 2lNUteFxHua104bmSM/ngx/YUnxlegH0dLS4vfKRQnC2F5uvsjuO+VyL4etB G4vwHn1O56k36QT6mZxI0u6jihGvsZK+L+18EvPvnMzbfN+BZ5UUcvmlihLo XwzjcYrFp1Dfx0QK1IkrFTj9/HFqdndn5NsTSuvP7jwN/Z5ZfOqP/hnw+1BW na9RBj0DN/I4OOAs6otLID//VrCsSwgHRz84B/9DcorMKDmPfHV/f48Wx5Qj fn4syS8dvNA2jxTOqjK8CPtMZ85/Pv8S9B5FUnHL8Mu4T54ZdLp9uyvQf5/C F/o0gFWLj9P1Eeev4nwdQrlCXX4N+guDuHqB53XUbxrMdQZmN6B3NZJfGOre RP63SfzWYtwtgSXLsrnZuctt7NvvRPrm1wgWvXMgUfS1O9C7FseKGdkVAiup pFH34sC78NdawcqXrCqRr30WD65acQ98aR+pPlevwnnb5NCYlt730d8vL57c /hNYqz6eNPtUVkM/KYPnjDj+APa1YaylLn0I/Yt2pLvA4RHmUXqCDQw21sCu kUxrDWfXot+FafRMo/Yx7ssLOe3r7FaP+q5IqMPj0Q3QK4zlsILLT5HfNppG +1o8x3z4KBUaKb3EPrxNZR3Nwlfw/5XBlV02NuI+t0sl07ofb9Dfpt3cUpjw DnqfMsjDb9EH7EN2Evc1ftkEvaIIlk/3b0Z9n+NZs9uUFtjlOVxeX/EZ802Q 0Noi+6/I1ymLXbdsbsV75pnLmaL53zCvL3KqTBnxHfNwC6Y/Szv+gN3z7+/X pldga80MXht+/Sf2K05GrnNyfyE+SMKZdaG/kW9nFt3zcPiDfep0mkQTtoh+ C/4xGTTh1vx2Av/9e5TX7RupIHCZupTEgxTbC3x75jHKPP0aXK8j43vbb3QQ 2Lj7GRJ1yesosGiahCYeDVMUWC+lmNevcewksNKNv78fW7d0hn+NnLLiFnQR uDOd4CrtUV0F1oqLJtErxW4Ci1PcaWJgI1jUPpDXa9zsLrD6vlQW38/rgfqv p1PWwfCeAkeanuGqEQd6Qf/v+yK6tFUJ+q4JNNFCqzfmcTeB1/ce3Qf28/Ek LuqkLPDKr6mcteUNWDKljD0Mw/qhvnpl2rqNBmB+GdGs+d+LgajvaTb12B40 WODqBqYXprOGor73Ujpt9kQF+fslk9TcbzjOr3087d09bQTymW5lPYuakeCT 2axq5TkanK1NrXvVxqDeyES6Y3N/rMCqvdMo0048Hv2Fych9//iJiH+1lzc7 VEyCv2kuTzvgrIZ5DfLilUOHqoProsniTOlUnM91OfmYGE7DPuyVkbzjb03o b5xHZenxM9Dv1yyuXbZgFuzDD9H393WzUZ93GvUPEc+Ff8gx0pg+gmCXZ5FB 9dn5mNfMCNrtbKIlcFO6jL2HtddGfamlLD+bvEhgR898KjPV+Vfg3GnZXNPp +WLsf9Mxbs301IP+4Ux6XbRzCfTvH6eH55YsRXxYIl+7OXEZ6m05wqUPe+ij PwNzznnxoY2fGVN8853lYJEyH/ldYID90D3Mrl2lK7Bfsmi27u+4Ev34Z7Dx yM2rkE83j1apzVuN+p/FkfacYWsQ3yThaYtFawU2f5THo1c3gEUVodTPqHyd wAN/nSTF3anrEf8wmr7u99mAfN1y+JXb7o2IX2VFDwL1N2E/puTQ1Si1zein Pp1PpShtQbydB2fnNYNVa8Mpliu3guelUeCVIkPoXThGLvcijXDftfPJ6onT NoFnleTTtndbjXFeo4t45bf5/2FfrmTRwo4jTFDPyETS6N1+O+o/so9GqTwH G9cmcN/xl0yRX6OAD7RamGG/F56hx5f6mKPeYWGsHVG8C/d/vozTzIz2oJ6h +dx9RgdL5F8uJeuOmVY4z2X5fK9yhTX815XRHPlnG9TTIZwT7GLssG8bk7jD ooX7sY8TCtm8z0t76Ff40Y0nAY6or7WANPI0nHCedeksFVc7C2w9Ws4/Vrgc wrzO5rDx8NGu8J9/jPaf7SyGXXqW/La/A4srkymhY4UbOCqPC9OK3DG/9GC+ siTmMOrhaHr8xtUD/Rkdo5ZAU0+8X4WF3EV9iZfAratP0bCKyd7IPyCLNff1 8cH5mWXykv5fwcbppWRU/MgX8+lewHaby/ywP7on2een3B/z9JVTXLxvgMDd n1+gfC2rQJzPqky+1LD6CN6Pf0u5xmNmEPpttOOPY4ZKcL/yTpDiFVEw7Kou NGTPc3DuoiJW73E1BPZ5Qbz42NFQnEdMOm1ZFRqGfeN8tv7kEI7zaI1hr/Ct Upz3bg+KmbkwAvMuP8u5D/6JRPynHLrg3DVK4Mt38uihygdw8Y58+nDmbjTu vxpzB5PimLbzyaA8w+1xyLf9KBlt6pmAelYkU/d1J2XIP0nCJ1eaJiH+fiGZ 6feSo56Ev7/P9EpScH6LdvDl6rVp/+M+7XbMyj5zkf4P9lklQA== "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQBWIQzVZfvPzff3YHIcZUizX7j9nm2QusBPGBUgwBIgv2 SlvvXgXjJ/ju2HvCLG0NjM9wPHtvmZHgOhi/YM8aW2W9Peth/AUFu/de0Ezf COMbHNxsW6cqtBnGP+C32FZbce8WGP+B96K9N2QytsHtu7XS9uROrh0w/ofG o7a7wtbuhNs/d63t6s/+u2H8Crlte+dM+LQH7h7djXt7dafug+t32Wdbd8r8 AIw/IX2TbX76rYMwfkNT494EltrDMH6G3BbbwIXyR2F8nd8HbJ3sDh2Du9dg 1V7j2ykn4PxbG/aqVLCfgvE74rbbioquOg3jO7A12LJt8jkL4194tsP2h9/7 czD+Bte1e1++nngBxlfRP2Z75EvJRXh8nN+yd8Hf8Etw/0/bbFvBoXYZxO+b 9/fxyuxjewGnuMBY "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQBGIQne6/7u+//+wOQoypFmv2H7M9tUbjP4gPlGLQ6Nm3 l6XsAsN/KJ9hX5KtnX0FE4y/gG+rbTmHAguMr2F0cO+Gi8dZ4eq199q+mpXP DuPviNtg+8oylAPGV7izxPblDStOGL9hZ6Hti3IFLhhfwGX53hdibNwwfsGV 3XtfbH0N55+Ytdn2echFHhjf4VfX3meft/HC+AGv9+59NmkOH4x/wGC+7TPD Jn4Y/8bBnXufXkgXgPundartk3xfQbh7lh2wfcJnLATn31m698laCWG4e+KW 2D72+Qfnf9l5ZO+j149F4OHhu3vvo66TojC+RP+GvY8014vB+BvaF+0VyYgQ /48U/gBzi6AA "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQB2IQ7b/mivj//+wOQoypFmv2H7N9kF4lAeIDpRgUdk/Z +4AtQRLGX/B5wd4HS12lYHyBw+v23nfRlobxT3zYuffeYwEZGP/Cuv2295q+ IfjvV9veU7wjCzdfbt7euwcOysH4HB8P296JXy4P43/4uNT2zr8eBRi/4PbW vXfmFinC+Anv1tretolQgvElenbuvXXbVhnGd0iaYHurSlkFxn9hvc+25hWL KozvwXXIVjbqGZw/Reuw7b6Tx9Vg/JDKQ7YJlivVYfwJD/fbMq7s0oDxI8S2 2y6SyNGEy3MttXXp8NWC+69s+t6KBZLayOELACBjkig= "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQB2IQ3b/8vPn//+wOQoypFmv2H7ONakqxAPGBUgwJu+fv /fPR1RLGL7BdtndeoroVjO8RuWmv/UUOaxi/Y83evQ8cXsH5N4wP2zZtOG0D 4wtIbrZVVlhrC+MrPJq490h/nx2M/0X3wN60//n2cPNLt9iy5wc6wPgM29fv PcP6zRHGP3PioO2kObOcYfwNtav3Rhjbu8L4FxgX2cqdeuwG40+w3Gj7JKHD A8YP4Ftqu+q7jhdc/veyvQV9F71h/AfXjtiaqZb5ws27vmzvn91S/jC+wc9l toeC9gfA9fNutu14mRwEd+/6pbYMGwyDkcMXAA+ckuw= "]], LineBox[{{2.999998729757736, 4.137968357662562*^-11}, { 2.9999987309883034`, 3.7702174715548153`*^-11}, { 2.999998743229053, -1.4494294653388806`*^-11}, {2.999998755469803, 6.441402966572696*^-12}, {2.9999987677105526`, 1.259414794674285*^-11}, { 2.9999987743468823`, 2.920952368867802*^-11}, { 2.999998780241817, -4.078276301635248*^-11}}], LineBox[{{2.9999991679239697`, 4.137968357662562*^-11}, { 2.99999917833395, -9.078404694662368*^-12}, {2.9999991904816525`, 1.2033374297004684`*^-11}, {2.999999202629355, 1.0655143434235015`*^-11}, { 2.9999992147770573`, -1.4256928970723948`*^-11}, { 2.999999221279455, -4.078276301635248*^-11}}], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQA2IQXdUVd+vff3YHIcZUizX7j9kahJndBvGBUgwOa6fb csdL3oHxz8Qe3vss/Q+c/0Jnl+2hgvt3YfwA2x1751YeugfjZxw9aFvRtPQ+ jF+xd8vekO6OBzC+he72vfpTsh/C9Rfs2cs11+8RjL/j9Bbbp0sNH8P4H74t tj2wTuQJjN/wqHfvnO3f4fyOpC17yw/cegrja/w/vDfo5N5nMP6BiIl79S4t eA7jJ6zZY8t5u/kFjM/wIML2yeO0lzD+jOu7bfe/8XwF4ytsmbl31led1zD+ hp3rbMv+8b+B8U8w7NzLffTxG+TwBABEPp4n "]], LineBox[{{2.9999979523912486`, 4.137968357662562*^-11}, { 2.9999979630466145`, 1.2050249686978987`*^-11}, {2.9999979753804116`, 2.31316077403676*^-11}, {2.9999979877142087`, 2.4898971773268386`*^-11}, {2.9999980000480058`, 1.7180257216864447`*^-11}, { 2.999998012381803, -2.0095036745715333`*^-13}, { 2.9999980247155995`, -2.7426061421920167`*^-11}, { 2.999998037049396, -8.121392447435483*^-12}, {2.9999980493831933`, 1.6789902801406242`*^-12}, {2.9999980617169903`, 1.793898363189328*^-12}, {2.9999980719124095`, 4.137968357662562*^-11}}], LineBox[{{2.999998415870899, 4.137968357662562*^-11}, {2.999998420954344, 2.4574564605472915`*^-11}, { 2.999998427515397, -7.182032746300138*^-13}, {2.9999984340764496`, 4.123978936121375*^-11}, {2.999998440637502, 8.902989456771593*^-12}, { 2.9999984471985552`, -2.7172597505398244`*^-11}, {2.999998453759608, 4.76718664543796*^-12}, {2.9999984603206604`, 3.3484437444997184`*^-11}, { 2.9999984668817135`, -1.3478440585856788`*^-11}, {2.9999984734427665`, 8.357647907075716*^-12}, { 2.9999984793524264`, -4.078276301635248*^-11}}], LineBox[{{2.9999988660270827`, -4.078276301635248*^-11}, { 2.9999988672554956`, -3.20067305992211*^-11}, {2.9999988738918253`, 1.1074807737543324`*^-11}, { 2.999998879580244, -4.078276301635248*^-11}}], LineBox[{{2.9999990423679734`, 4.137968357662562*^-11}, { 2.999999054420918, -4.0456971106550554`*^-11}, { 2.9999990668122214`, -2.8421598408101545`*^-11}, { 2.9999990792035245`, -3.6906033784589454`*^-11}, {2.999999089705189, 4.137968357662562*^-11}}], LineBox[{{2.999997760326214, -4.078276301635248*^-11}, { 2.9999977657006793`, -1.4762968625348094`*^-11}, {2.9999977723082556`, 1.4966472505761885`*^-11}, { 2.999997778915832, -7.570166715709092*^-12}, {2.9999977855234086`, 1.7429502285892795`*^-11}, { 2.999997792130985, -1.0178080600553585`*^-11}, {2.999997798738561, 1.0005107853316986`*^-11}, { 2.999997805346138, -2.2764568008426522`*^-11}, {2.999997811766081, 4.137968357662562*^-11}}], LineBox[{{2.9999988103312685`, 4.137968357662562*^-11}, { 2.9999988141648597`, 3.531697156944347*^-11}, {2.999998820801189, 2.0035195724688037`*^-11}, { 2.9999988274375182`, -1.1457501614131615`*^-13}, { 2.999998834073848, -2.5215385335286555`*^-11}, {2.9999988407101776`, 4.041533774312711*^-11}, {2.9999988473465073`, 5.706879413480692*^-12}, { 2.999998853982837, -3.42070816117257*^-11}, { 2.9999988549480543`, -4.078276301635248*^-11}}], LineBox[{{2.9999990068743654`, -4.078276301635248*^-11}, { 2.999999017247008, 3.40198980097739*^-11}, { 2.999999029638311, -8.530176565102465*^-12}, {2.9999990414843354`, 4.137968357662562*^-11}}], LineBox[{{2.999999417440062, -4.078276301635248*^-11}, { 2.9999994188258308`, -2.7483459952293288`*^-11}, {2.999999425415637, 2.7762792065288977`*^-11}, {2.9999994273260087`, 4.137968357662562*^-11}}], LineBox[{{2.9999996186373243`, -4.078276301635248*^-11}, { 2.999999620465748, -2.6567081867767683`*^-11}, {2.9999996327640037`, 2.397237963691623*^-11}, { 2.9999996353163465`, -4.078276301635248*^-11}}], LineBox[{{2.9999989087621386`, -4.078276301635248*^-11}, { 2.9999989137098027`, -3.021238814682192*^-11}, { 2.9999989203461324`, -2.0958790258873705`*^-11}, { 2.999998926982462, -1.6721291018484408`*^-11}, { 2.9999989336187918`, -1.759348222662993*^-11}, { 2.999998940255121, -2.3671287152637888`*^-11}, { 2.9999989468914503`, -3.505318257879253*^-11}, { 2.9999989491564976`, -4.078276301635248*^-11}}], LineBox[{{2.9999993163197938`, 4.137968357662562*^-11}, { 2.99999932410638, -2.8517410655126696`*^-11}, { 2.999999336254082, -2.078115457493368*^-12}, { 2.9999993484017846`, -2.961519918187605*^-12}, { 2.999999360549487, -3.2724933873851114`*^-11}, {2.9999993682657724`, 4.137968357662562*^-11}}], LineBox[{{2.9999995273249276`, -4.078276301635248*^-11}, { 2.9999995308525325`, 2.2504775820664236`*^-11}, { 2.9999995340567023`, -4.078276301635248*^-11}}], LineBox[{{2.999998790896425, -4.078276301635248*^-11}, { 2.9999987942558706`, -3.9319325573217156`*^-11}, { 2.9999988000783278`, -4.078276301635248*^-11}}], LineBox[{{2.9999984824095, -4.078276301635248*^-11}, { 2.9999984865648717`, -3.142675009115692*^-11}, { 2.9999984931259247`, -2.0096369013344884`*^-11}, { 2.9999984996869777`, -1.2253642545090315`*^-11}, {2.9999985041620345`, 4.137968357662562*^-11}}], LineBox[{{2.9999988822350554`, -4.078276301635248*^-11}, { 2.9999988871644847`, -1.5826673305241457`*^-11}, {2.9999988938008144`, 1.3197443138324161`*^-11}, {2.9999989004371437`, 3.756528421661187*^-11}, {2.999998906781339, -4.078276301635248*^-11}}], LineBox[{{2.9999990950581226`, 4.137968357662562*^-11}, { 2.9999991039861307`, 5.066169705969514*^-12}, {2.99999911262117, 4.137968357662562*^-11}}], LineBox[{{2.9999992905355075`, 4.137968357662562*^-11}, { 2.999999299810975, 8.844036614163997*^-13}, {2.9999993059875734`, 4.137968357662562*^-11}}], LineBox[{{2.9999994513025157`, -4.078276301635248*^-11}, { 2.999999451774861, -3.9497072279459644`*^-11}, { 2.999999458364667, -3.1145530599019366`*^-11}, { 2.999999464954473, -3.273359361344319*^-11}, { 2.999999469412017, -4.078276301635248*^-11}}], LineBox[{{2.999999656828211, -4.078276301635248*^-11}, { 2.999999657360516, -2.959632539045742*^-11}, { 2.9999996585503648`, -4.078276301635248*^-11}}], LineBox[{{2.999999592172529, 4.137968357662562*^-11}, { 2.9999995958692356`, 1.5955792243005362`*^-11}, { 2.9999996009205363`, -4.078276301635248*^-11}}], LineBox[{{2.9999992308915, -4.078276301635248*^-11}, {2.999999239072462, 6.7128524960935465`*^-12}, {2.9999992478132254`, 4.137968357662562*^-11}}], LineBox[{{2.9999991336941814`, 4.137968357662562*^-11}, { 2.999999141160041, -3.040567797540916*^-11}, { 2.999999150250492, -4.078276301635248*^-11}}], LineBox[{{2.999999541954612, -4.078276301635248*^-11}, { 2.9999995440321445`, -9.993783578465809*^-12}, {2.9999995478598223`, 4.137968357662562*^-11}}], LineBox[{{2.999999738212422, 4.137968357662562*^-11}, { 2.999999743448308, -2.2793322784764314`*^-11}, { 2.999999744357581, -4.078276301635248*^-11}}], LineBox[{{2.999999515245024, 4.137968357662562*^-11}, { 2.9999995176729204`, 8.210765400917808*^-12}, { 2.9999995207793715`, -4.078276301635248*^-11}}], LineBox[{{2.9999989543964616`, -4.078276301635248*^-11}, { 2.9999989601641097`, 3.2633562518924464`*^-11}, {2.9999989668004394`, 5.40933964288115*^-12}, {2.999998973436769, -2.7529534207815232`*^-11}, { 2.99999897996147, 4.137968357662562*^-11}}], LineBox[{{2.9999995625552316`, -4.078276301635248*^-11}, { 2.9999995638015617`, -2.8495317216936655`*^-11}, {2.9999995703913678`, 2.5830892980138742`*^-11}, {2.9999995727639277`, 4.137968357662562*^-11}}], LineBox[{{2.999999376990404, 4.137968357662562*^-11}, { 2.9999993792869954`, 1.8613999230865375`*^-11}, { 2.9999993844668693`, -4.078276301635248*^-11}}], LineBox[{{2.9999998967616786`, 4.137968357662562*^-11}, { 2.9999998970357087`, 3.4293456963041535`*^-11}, { 2.9999998989866516`, -4.078276301635248*^-11}}], LineBox[{{2.999999841358731, -4.078276301635248*^-11}, { 2.999999842121529, -2.2412405265015423`*^-11}, { 2.999999842333874, -4.078276301635248*^-11}}], LineBox[{{2.9999994002532095`, -4.078276301635248*^-11}, { 2.9999994056462187`, 2.50955922709295*^-11}, { 2.9999994093944387`, -4.078276301635248*^-11}}], LineBox[{{2.9999993869796544`, -4.078276301635248*^-11}, { 2.9999993924666075`, 3.9654168837444104`*^-11}, { 2.999999398042915, -4.078276301635248*^-11}}], LineBox[{{2.9999994950289133`, 4.137968357662562*^-11}, { 2.9999994979035023`, 1.7652435069237526`*^-11}, { 2.9999995036685814`, -4.078276301635248*^-11}}], LineBox[{{2.9999989802286438`, 4.137968357662562*^-11}, { 2.9999989910688742`, -4.078276301635248*^-11}}], LineBox[{{2.9999992786367082`, -4.078276301635248*^-11}, { 2.999999286468044, 4.137968357662562*^-11}}], LineBox[{{2.999999480918261, 4.137968357662562*^-11}, { 2.9999994831151495`, -4.078276301635248*^-11}}], LineBox[{{2.9999996895760663`, -4.078276301635248*^-11}, { 2.999999691746315, 4.137968357662562*^-11}}], LineBox[{{2.99999994808602, 4.137968357662562*^-11}, { 2.999999948518558, -4.078276301635248*^-11}}], LineBox[{{2.9999998094438145`, 4.137968357662562*^-11}, { 2.999999811207503, -4.078276301635248*^-11}}], LineBox[{{2.9999995048670858`, -4.078276301635248*^-11}, { 2.999999508540812, 4.137968357662562*^-11}}], LineBox[{{2.999999920140293, 4.137968357662562*^-11}, { 2.9999999211634516`, -4.078276301635248*^-11}}], LineBox[{{2.9999992525230046`, 4.137968357662562*^-11}, { 2.9999992604450125`, -4.078276301635248*^-11}}], LineBox[{{2.99999915404008, -4.078276301635248*^-11}, { 2.9999991646970012`, 4.137968357662562*^-11}}], LineBox[{{2.9999996979463224`, 4.137968357662562*^-11}, { 2.9999997011390565`, -4.078276301635248*^-11}}], LineBox[{{2.9999998536378976`, -4.078276301635248*^-11}, { 2.999999854302099, 4.137968357662562*^-11}}], LineBox[{{2.999999963560477, -4.078276301635248*^-11}, {2.999999963714412, 4.137968357662562*^-11}}], LineBox[{{2.9999997247574126`, -4.078276301635248*^-11}, { 2.999999727870441, 4.137968357662562*^-11}}], LineBox[{{2.9999999356680074`, 4.137968357662562*^-11}, { 2.999999936348366, -4.078276301635248*^-11}}], LineBox[{{2.9999999927138608`, 4.137968357662562*^-11}, { 2.999999992787509, -4.078276301635248*^-11}}], LineBox[{{2.999999487015771, -4.078276301635248*^-11}, {2.999999490145552, 4.137968357662562*^-11}}], LineBox[{{2.9999994333847657`, 4.137968357662562*^-11}, { 2.999999436782472, -4.078276301635248*^-11}}], LineBox[{{2.99999880090784, -4.078276301635248*^-11}, { 2.9999988071896433`, 4.137968357662562*^-11}}], LineBox[{{2.9999998191820207`, -4.078276301635248*^-11}, { 2.9999998214868384`, 4.137968357662562*^-11}}], LineBox[{{2.9999999266019315`, -4.078276301635248*^-11}, { 2.9999999272500997`, 4.137968357662562*^-11}}], LineBox[{{2.999999980411552, -4.078276301635248*^-11}, { 2.9999999804777793`, 4.137968357662562*^-11}}], LineBox[{{2.999999804037609, -4.078276301635248*^-11}, { 2.9999998059851647`, 4.137968357662562*^-11}}], LineBox[{{2.9999999153191155`, -4.078276301635248*^-11}, { 2.999999915987557, 4.137968357662562*^-11}}], LineBox[{{2.999999552042987, 4.137968357662562*^-11}, { 2.999999555192412, -4.078276301635248*^-11}}], LineBox[{{2.9999999682430767`, 4.137968357662562*^-11}, { 2.999999968444087, -4.078276301635248*^-11}}], LineBox[{{2.999999831842573, 4.137968357662562*^-11}, { 2.999999833067167, -4.078276301635248*^-11}}], LineBox[{{2.9999999399891086`, -4.078276301635248*^-11}, { 2.999999940631249, 4.137968357662562*^-11}}], LineBox[{{2.999999471677722, -4.078276301635248*^-11}, { 2.9999994745252874`, 4.137968357662562*^-11}}], LineBox[{{2.9999999993474757`, -4.078276301635248*^-11}, { 2.9999999999997957`, -1.27675647831893*^-14}}]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{2.99999, 0}, PlotRange->NCache[{{ Rational[299999, 100000], 3}, {-4.078276301635248*^-11, 4.137968357662562*^-11}}, {{2.99999, 3}, {-4.078276301635248*^-11, 4.137968357662562*^-11}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{ 3.5349523079366093`*^9, {3.534952353736347*^9, 3.534952385656258*^9}, { 3.534952519930941*^9, 3.5349525364084663`*^9}, {3.534952589651496*^9, 3.534952638952092*^9}, {3.5349526890749397`*^9, 3.53495271213483*^9}, 3.535032675404014*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", "*", RowBox[{"Sin", "[", "t", "]"}]}], "-", RowBox[{"t", "*", RowBox[{"(", RowBox[{"1", "+", RowBox[{"Cos", "[", "t", "]"}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", "*", RowBox[{"Sin", "[", "t", "]"}]}], ")"}]}], "]"}], "//", "CForm"}]], "Input", CellChangeTimes->{{3.534957853110901*^9, 3.53495787627563*^9}, { 3.534957939857259*^9, 3.5349579893278913`*^9}, {3.534958154426886*^9, 3.534958155993161*^9}}], Cell["1 - (t*Cot(t/2.))/2.", "Output", CellChangeTimes->{{3.534957857880176*^9, 3.534957876734346*^9}, { 3.534957969196027*^9, 3.534957990086001*^9}, 3.534958156565527*^9, 3.5350326755888557`*^9}] }, Open ]], Cell[CellGroupData[{ Cell["Cayley Transform in retract", "Subtitle", CellChangeTimes->{{3.535032631197674*^9, 3.535032640284687*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"Skew", "[", RowBox[{"xi_", ",", "yi_", ",", "zi_"}], "]"}], ":=", RowBox[{"(", GridBox[{ {"0", RowBox[{"-", "zi"}], "yi"}, {"zi", "0", RowBox[{"-", "xi"}]}, { RowBox[{"-", "yi"}], "xi", "0"} }], ")"}]}]], "Input", CellChangeTimes->{{3.534792086525635*^9, 3.534792116896299*^9}, { 3.534792158173279*^9, 3.53479216472799*^9}, {3.534792288463591*^9, 3.5347922999679413`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"I3", "=", RowBox[{"IdentityMatrix", "[", "3", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.534792468765259*^9, 3.534792475463044*^9}, 3.53479453986604*^9}], Cell[BoxData[ RowBox[{ RowBox[{"Cayley", "[", "A_", "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{"I3", "-", "A"}], ")"}], ".", RowBox[{"Inverse", "[", RowBox[{"I3", "+", "A"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.534792413006259*^9, 3.534792514894662*^9}, { 3.53479438804801*^9, 3.534794399920623*^9}, {3.53479444890162*^9, 3.5347944810270233`*^9}, {3.5347945649687643`*^9, 3.534794580760129*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Cayley", "[", RowBox[{ RowBox[{"-", RowBox[{"(", GridBox[{ {"0", RowBox[{"-", "z"}], "y"}, {"z", "0", RowBox[{"-", "x"}]}, { RowBox[{"-", "y"}], "x", "0"} }], ")"}]}], "/", "2"}], "]"}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.534794736641182*^9, 3.534794794595385*^9}, { 3.534794827306637*^9, 3.5347949302401047`*^9}, {3.53479499457475*^9, 3.53479500887815*^9}, {3.534795085606778*^9, 3.534795126525136*^9}, { 3.5347952414583607`*^9, 3.5347952790572643`*^9}, {3.5348001493303022`*^9, 3.5348001595511427`*^9}, {3.534802709607703*^9, 3.53480271071006*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"4", "+", SuperscriptBox["x", "2"], "-", SuperscriptBox["y", "2"], "-", SuperscriptBox["z", "2"]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"2", " ", "x", " ", "y"}], "-", RowBox[{"4", " ", "z"}]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"4", " ", "y"}], "+", RowBox[{"2", " ", "x", " ", "z"}]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"2", " ", "x", " ", "y"}], "+", RowBox[{"4", " ", "z"}]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", FractionBox[ RowBox[{"4", "-", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "-", SuperscriptBox["z", "2"]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "x"}], "+", RowBox[{"y", " ", "z"}]}], ")"}]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "y"}], "+", RowBox[{"x", " ", "z"}]}], ")"}]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", FractionBox[ RowBox[{ RowBox[{"4", " ", "x"}], "+", RowBox[{"2", " ", "y", " ", "z"}]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", FractionBox[ RowBox[{"4", "-", SuperscriptBox["x", "2"], "-", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], RowBox[{"4", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.534794740458538*^9, 3.534794795032645*^9}, { 3.534794829552143*^9, 3.534794930591991*^9}, {3.534795003580193*^9, 3.53479500947468*^9}, {3.5347950865543413`*^9, 3.5347951270879927`*^9}, 3.5347952423882933`*^9, {3.5347952742561703`*^9, 3.53479528028828*^9}, { 3.5348001511710167`*^9, 3.5348001635975103`*^9}, 3.5348027111236687`*^9, 3.535032675837214*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Inverse Cayley Transform in localCoordinates\ \>", "Subtitle", CellChangeTimes->{{3.534851852589015*^9, 3.53485186951376*^9}, { 3.5350327400274553`*^9, 3.535032754058358*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Cayley", "[", RowBox[{"(", GridBox[{ {"a", "b", "c"}, {"d", "e", "f"}, {"g", "h", "i"} }], ")"}], "]"}], "//", "Simplify"}], "//", "MatrixForm"}]], "Input", CellChangeTimes->{{3.5348668592411547`*^9, 3.534866893568824*^9}, { 3.534867079809691*^9, 3.53486710458702*^9}, 3.534867157215678*^9, { 3.534867196764654*^9, 3.53486719869942*^9}, {3.534867368508621*^9, 3.534867369905733*^9}}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { FractionBox[ RowBox[{"1", "+", "e", "+", RowBox[{"c", " ", "g"}], "+", RowBox[{"c", " ", "e", " ", "g"}], "-", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "+", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "-", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]], RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"b", "-", RowBox[{"c", " ", "h"}], "+", RowBox[{"b", " ", "i"}]}], ")"}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]}], RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"c", "+", RowBox[{"c", " ", "e"}], "-", RowBox[{"b", " ", "f"}]}], ")"}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]}]}, { RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]}], FractionBox[ RowBox[{"1", "-", "e", "-", RowBox[{"c", " ", "g"}], "+", RowBox[{"c", " ", "e", " ", "g"}], "-", RowBox[{"c", " ", "d", " ", "h"}], "+", RowBox[{"f", " ", "h"}], "+", "i", "-", RowBox[{"e", " ", "i"}], "+", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"f", " ", "h"}], "+", "i", "-", RowBox[{"e", " ", RowBox[{"(", RowBox[{"1", "+", "i"}], ")"}]}]}], ")"}]}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]], RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", "d"}], "+", "f", "+", RowBox[{"a", " ", "f"}]}], ")"}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]}]}, { RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"g", "+", RowBox[{"e", " ", "g"}], "-", RowBox[{"d", " ", "h"}]}], ")"}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]}], RowBox[{"-", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "b"}], " ", "g"}], "+", "h", "+", RowBox[{"a", " ", "h"}]}], ")"}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]}], FractionBox[ RowBox[{"1", "+", "e", "+", RowBox[{"c", " ", "g"}], "+", RowBox[{"c", " ", "e", " ", "g"}], "-", RowBox[{"c", " ", "d", " ", "h"}], "+", RowBox[{"f", " ", "h"}], "-", "i", "-", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "+", RowBox[{"f", " ", "g"}], "-", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "+", RowBox[{"f", " ", "h"}], "-", "i", "-", RowBox[{"e", " ", "i"}]}], ")"}]}]}], RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}]]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.534866885388957*^9, 3.534866896313146*^9}, { 3.534867081290526*^9, 3.534867105413108*^9}, 3.534867157654133*^9, 3.534867199577175*^9, 3.535032676157619*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{"1", "+", "e", "-", RowBox[{"c", " ", "g"}], "-", RowBox[{"c", " ", "e", " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], "\[Rule]", "K"}], "}"}]}]], "Input", CellChangeTimes->{{3.5348674422589073`*^9, 3.5348674422771378`*^9}, { 3.5348675075614977`*^9, 3.534867521418206*^9}, {3.535032788609457*^9, 3.535032790665083*^9}, {3.535032843526026*^9, 3.535033005751606*^9}}], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"-", "c"}], " ", RowBox[{"(", RowBox[{"1", "+", "e"}], ")"}], " ", "g"}], "+", RowBox[{"c", " ", "d", " ", "h"}], "-", RowBox[{"b", " ", RowBox[{"(", RowBox[{"d", "-", RowBox[{"f", " ", "g"}], "+", RowBox[{"d", " ", "i"}]}], ")"}]}], "+", RowBox[{"a", " ", RowBox[{"(", RowBox[{"1", "+", "e", "-", RowBox[{"f", " ", "h"}], "+", "i", "+", RowBox[{"e", " ", "i"}]}], ")"}]}], "+", "K"}]], "Output", CellChangeTimes->{{3.5348675112204113`*^9, 3.534867521782625*^9}, 3.535032676270063*^9, 3.53503279118965*^9, {3.535032857389606*^9, 3.535032876409691*^9}, {3.535032914921414*^9, 3.5350330062704144`*^9}}] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{740, 752}, WindowMargins->{{28, Automatic}, {36, Automatic}}, FrontEndVersion->"8.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 5, \ 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 86, 1, 76, "Title"], Cell[668, 25, 114, 1, 26, "Subsubtitle"], Cell[CellGroupData[{ Cell[807, 30, 417, 11, 27, "Input"], Cell[1227, 43, 527, 16, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1791, 64, 602, 19, 49, "Input"], Cell[2396, 85, 1619, 33, 227, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4052, 123, 321, 9, 27, "Input"], Cell[4376, 134, 2527, 47, 231, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6940, 186, 507, 16, 27, "Input"], Cell[7450, 204, 413, 13, 67, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7900, 222, 209, 5, 27, "Input"], Cell[8112, 229, 891, 29, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9040, 263, 615, 17, 46, "Input"], Cell[9658, 282, 25211, 438, 205, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34906, 725, 604, 18, 27, "Input"], Cell[35513, 745, 204, 3, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35754, 753, 113, 1, 46, "Subtitle"], Cell[35870, 756, 459, 14, 61, "Input"], Cell[36332, 772, 201, 5, 27, "Input"], Cell[36536, 779, 430, 10, 27, "Input"], Cell[CellGroupData[{ Cell[36991, 793, 686, 17, 61, "Input"], Cell[37680, 812, 3190, 95, 143, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[40919, 913, 188, 4, 46, "Subtitle"], Cell[CellGroupData[{ Cell[41132, 921, 473, 12, 61, "Input"], Cell[41608, 935, 9811, 262, 97, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[51456, 1202, 1022, 26, 43, "Input"], Cell[52481, 1230, 715, 19, 27, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)