/* * QPSolver.cpp * @brief: * @date: Apr 15, 2014 * @author: thduynguyen */ #include #include #include #include using namespace std; namespace gtsam { //****************************************************************************** QPSolver::QPSolver(const QP& qp) : qp_(qp) { baseGraph_ = qp_.cost; baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end()); costVariableIndex_ = VariableIndex(qp_.cost); equalityVariableIndex_ = VariableIndex(qp_.equalities); inequalityVariableIndex_ = VariableIndex(qp_.inequalities); constrainedKeys_ = qp_.equalities.keys(); constrainedKeys_.merge(qp_.inequalities.keys()); } //****************************************************************************** VectorValues QPSolver::solveWithCurrentWorkingSet( const LinearInequalityFactorGraph& workingSet) const { GaussianFactorGraph workingGraph = baseGraph_; BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) { if (factor->active()) workingGraph.push_back(factor); } return workingGraph.optimize(); } //****************************************************************************** JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key, const LinearInequalityFactorGraph& workingSet, const VectorValues& delta) const { // Transpose the A matrix of constrained factors to have the jacobian of the dual key std::vector > Aterms = collectDualJacobians < LinearEquality > (key, qp_.equalities, equalityVariableIndex_); std::vector > AtermsInequalities = collectDualJacobians < LinearInequality > (key, workingSet, inequalityVariableIndex_); Aterms.insert(Aterms.end(), AtermsInequalities.begin(), AtermsInequalities.end()); // Collect the gradients of unconstrained cost factors to the b vector if (Aterms.size() > 0) { Vector b = zero(delta.at(key).size()); if (costVariableIndex_.find(key) != costVariableIndex_.end()) { BOOST_FOREACH(size_t factorIx, costVariableIndex_[key]) { GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx); b += factor->gradient(key, delta); } } return boost::make_shared(Aterms, b, noiseModel::Constrained::All(b.rows())); } else { return boost::make_shared(); } } //****************************************************************************** GaussianFactorGraph::shared_ptr QPSolver::buildDualGraph( const LinearInequalityFactorGraph& workingSet, const VectorValues& delta) const { GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph()); BOOST_FOREACH(Key key, constrainedKeys_) { // Each constrained key becomes a factor in the dual graph JacobianFactor::shared_ptr dualFactor = createDualFactor(key, workingSet, delta); if (!dualFactor->empty()) dualGraph->push_back(dualFactor); } return dualGraph; } //****************************************************************************** int QPSolver::identifyLeavingConstraint( const LinearInequalityFactorGraph& workingSet, const VectorValues& lambdas) const { int worstFactorIx = -1; // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either // inactive or a good inequality constraint, so we don't care! double maxLambda = 0.0; for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) { const LinearInequality::shared_ptr& factor = workingSet.at(factorIx); if (factor->active()) { double lambda = lambdas.at(factor->dualKey())[0]; if (lambda > maxLambda) { worstFactorIx = factorIx; maxLambda = lambda; } } } return worstFactorIx; } //****************************************************************************** /* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints * If some inactive inequality constraints complain about the full step (alpha = 1), * we have to adjust alpha to stay within the inequality constraints' feasible regions. * * For each inactive inequality j: * - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints * - We want: aj'*(xk + alpha*p) - bj <= 0 * - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0 * it's good! * - We only care when aj'*p > 0. In this case, we need to choose alpha so that * aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p) * We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p) * * We want the minimum of all those alphas among all inactive inequality. */ boost::tuple QPSolver::computeStepSize( const LinearInequalityFactorGraph& workingSet, const VectorValues& xk, const VectorValues& p) const { static bool debug = false; double minAlpha = 1.0; int closestFactorIx = -1; for(size_t factorIx = 0; factorIxgetb()[0]; // only check inactive factors if (!factor->active()) { // Compute a'*p double aTp = factor->dotProductRow(p); // Check if a'*p >0. Don't care if it's not. if (aTp <= 0) continue; // Compute a'*xk double aTx = factor->dotProductRow(xk); // alpha = (b - a'*xk) / (a'*p) double alpha = (b - aTx) / aTp; if (debug) cout << "alpha: " << alpha << endl; // We want the minimum of all those max alphas if (alpha < minAlpha) { closestFactorIx = factorIx; minAlpha = alpha; } } } return boost::make_tuple(minAlpha, closestFactorIx); } //****************************************************************************** QPState QPSolver::iterate(const QPState& state) const { static bool debug = false; // Solve with the current working set VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet); if (debug) newValues.print("New solution:"); // If we CAN'T move further if (newValues.equals(state.values, 1e-5)) { // Compute lambda from the dual graph if (debug) cout << "Building dual graph..." << endl; GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, newValues); if (debug) dualGraph->print("Dual graph: "); VectorValues duals = dualGraph->optimize(); if (debug) duals.print("Duals :"); int leavingFactor = identifyLeavingConstraint(state.workingSet, duals); if (debug) cout << "leavingFactor: " << leavingFactor << endl; // If all inequality constraints are satisfied: We have the solution!! if (leavingFactor < 0) { return QPState(newValues, duals, state.workingSet, true); } else { // Inactivate the leaving constraint LinearInequalityFactorGraph newWorkingSet = state.workingSet; newWorkingSet.at(leavingFactor)->inactivate(); return QPState(newValues, duals, newWorkingSet, false); } } else { // If we CAN make some progress // Adapt stepsize if some inactive constraints complain about this move double alpha; int factorIx; VectorValues p = newValues - state.values; boost::tie(alpha, factorIx) = // computeStepSize(state.workingSet, state.values, p); if (debug) cout << "alpha, factorIx: " << alpha << " " << factorIx << " " << endl; // also add to the working set the one that complains the most LinearInequalityFactorGraph newWorkingSet = state.workingSet; if (factorIx >= 0) newWorkingSet.at(factorIx)->activate(); // step! newValues = state.values + alpha * p; return QPState(newValues, state.duals, newWorkingSet, false); } } //****************************************************************************** LinearInequalityFactorGraph QPSolver::identifyActiveConstraints( const LinearInequalityFactorGraph& inequalities, const VectorValues& initialValues) const { LinearInequalityFactorGraph workingSet; BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities){ LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor)); double error = workingFactor->error(initialValues); if (fabs(error)>1e-7){ workingFactor->inactivate(); } else { workingFactor->activate(); } workingSet.push_back(workingFactor); } return workingSet; } //****************************************************************************** pair QPSolver::optimize( const VectorValues& initialValues) const { // Initialize workingSet from the feasible initialValues LinearInequalityFactorGraph workingSet = identifyActiveConstraints(qp_.inequalities, initialValues); QPState state(initialValues, VectorValues(), workingSet, false); /// main loop of the solver while (!state.converged) { state = iterate(state); } return make_pair(state.values, state.duals); } } /* namespace gtsam */