/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file CalibratedCamera.cpp * @brief Calibrated camera for which only pose is unknown * @date Aug 17, 2009 * @author Frank Dellaert */ #include #include namespace gtsam { /* ************************************************************************* */ CalibratedCamera::CalibratedCamera(const Pose3& pose) : pose_(pose) { } /* ************************************************************************* */ CalibratedCamera::CalibratedCamera(const Vector &v) : pose_(Pose3::Expmap(v)) { } /* ************************************************************************* */ Point2 CalibratedCamera::project_to_camera(const Point3& P, boost::optional H1) { if (H1) { double d = 1.0 / P.z(), d2 = d * d; *H1 = (Matrix(2, 3) << d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2); } return Point2(P.x() / P.z(), P.y() / P.z()); } /* ************************************************************************* */ Point3 CalibratedCamera::backproject_from_camera(const Point2& p, const double scale) { return Point3(p.x() * scale, p.y() * scale, scale); } /* ************************************************************************* */ CalibratedCamera CalibratedCamera::Level(const Pose2& pose2, double height) { double st = sin(pose2.theta()), ct = cos(pose2.theta()); Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0); Rot3 wRc(x, y, z); Point3 t(pose2.x(), pose2.y(), height); Pose3 pose3(wRc, t); return CalibratedCamera(pose3); } /* ************************************************************************* */ Point2 CalibratedCamera::project(const Point3& point, boost::optional Dpose, boost::optional Dpoint) const { #ifdef CALIBRATEDCAMERA_CHAIN_RULE Point3 q = pose_.transform_to(point, Dpose, Dpoint); #else Point3 q = pose_.transform_to(point); #endif Point2 intrinsic = project_to_camera(q); // Check if point is in front of camera if (q.z() <= 0) throw CheiralityException(); if (Dpose || Dpoint) { #ifdef CALIBRATEDCAMERA_CHAIN_RULE // just implement chain rule Matrix H; project_to_camera(q,H); if (Dpose) *Dpose = H * (*Dpose); if (Dpoint) *Dpoint = H * (*Dpoint); #else // optimized version, see CalibratedCamera.nb const double z = q.z(), d = 1.0 / z; const double u = intrinsic.x(), v = intrinsic.y(), uv = u * v; if (Dpose) *Dpose = (Matrix(2, 6) << uv, -(1. + u * u), v, -d, 0., d * u, (1. + v * v), -uv, -u, 0., -d, d * v); if (Dpoint) { const Matrix R(pose_.rotation().matrix()); *Dpoint = d * (Matrix(2, 3) << R(0, 0) - u * R(0, 2), R(1, 0) - u * R(1, 2), R(2, 0) - u * R(2, 2), R(0, 1) - v * R(0, 2), R(1, 1) - v * R(1, 2), R(2, 1) - v * R(2, 2)); } #endif } return intrinsic; } /* ************************************************************************* */ CalibratedCamera CalibratedCamera::retract(const Vector& d) const { return CalibratedCamera(pose().retract(d)); } /* ************************************************************************* */ Vector CalibratedCamera::localCoordinates(const CalibratedCamera& T2) const { return pose().localCoordinates(T2.pose()); } /* ************************************************************************* */ }