%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Checks for serialization using basic string interface % @author Alex Cunningham % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import gtsam.* %% Create keys for variables i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); j1 = symbol('l',1); j2 = symbol('l',2); %% Create values and verify string serialization pose1=Pose2(0.5, 0.0, 0.2); pose2=Pose2(2.3, 0.1,-0.2); pose3=Pose2(4.1, 0.1, 0.1); landmark1=Point2(1.8, 2.1); landmark2=Point2(4.1, 1.8); serialized_pose1 = pose1.string_serialize(); pose1ds = Pose2.string_deserialize(serialized_pose1); CHECK('pose1ds.equals(pose1, 1e-9)', pose1ds.equals(pose1, 1e-9)); %% Create and serialize Values values = Values; values.insert(i1, pose1); values.insert(i2, pose2); values.insert(i3, pose3); values.insert(j1, landmark1); values.insert(j2, landmark2); serialized_values = values.string_serialize(); valuesds = Values.string_deserialize(serialized_values); CHECK('valuesds.equals(values, 1e-9)', valuesds.equals(values, 1e-9)); %% Create graph and factors and serialize graph = NonlinearFactorGraph; % Prior factor priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph % Between Factors odometry = Pose2(2.0, 0.0, 0.0); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise)); graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise)); % Range Factors rNoise = noiseModel.Diagonal.Sigmas([0.2]); graph.add(RangeFactor2D(i1, j1, sqrt(4+4), rNoise)); graph.add(RangeFactor2D(i2, j1, 2, rNoise)); graph.add(RangeFactor2D(i3, j2, 2, rNoise)); % Bearing Factors degrees = pi/180; bNoise = noiseModel.Diagonal.Sigmas([0.1]); graph.add(BearingFactor2D(i1, j1, Rot2(45*degrees), bNoise)); graph.add(BearingFactor2D(i2, j1, Rot2(90*degrees), bNoise)); graph.add(BearingFactor2D(i3, j2, Rot2(90*degrees), bNoise)); % BearingRange Factors brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]); graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise)); graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise)); graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise)); serialized_graph = graph.string_serialize(); graphds = NonlinearFactorGraph.string_deserialize(serialized_graph); CHECK('graphds.equals(graph, 1e-9)', graphds.equals(graph, 1e-9));