%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import gtsam.* %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have bearing and range information for measurements % - We have full odometry for measurements % - The robot and landmarks are on a grid, moving 2 meters each step % - Landmarks are 2 meters away from the robot trajectory %% Create keys for variables i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); j1 = symbol('l',1); j2 = symbol('l',2); %% Create graph container and add factors to it graph = NonlinearFactorGraph; %% Add prior priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph %% Add odometry odometry = Pose2(2.0, 0.0, 0.0); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise)); graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise)); %% Add bearing/range measurement factors degrees = pi/180; brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]); graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise)); graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise)); graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise)); %% Initialize to noisy points initialEstimate = Values; initialEstimate.insert(i1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insert(i2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insert(i3, Pose2(4.1, 0.1, 0.1)); initialEstimate.insert(j1, Point2(1.8, 2.1)); initialEstimate.insert(j2, Point2(4.1, 1.8)); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate); result = optimizer.optimizeSafely(); marginals = Marginals(graph, result); %% Check first pose and point equality pose_1 = result.atPose2(symbol('x',1)); marginals.marginalCovariance(symbol('x',1)); CHECK('pose_1.equals(Pose2,1e-4)',pose_1.equals(Pose2,1e-4)); point_1 = result.atPoint2(symbol('l',1)); marginals.marginalCovariance(symbol('l',1)); CHECK('point_1.equals(Point2(2,2),1e-4)',norm(point_1 - Point2(2,2)) < 1e-4);