/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testSmartStereoProjectionFactorPP.cpp * @brief Unit tests for SmartStereoProjectionFactorPP Class * @author Luca Carlone * @date March 2021 */ #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; namespace { // make a realistic calibration matrix static double b = 1; static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov, w, h, b)); static Cal3_S2Stereo::shared_ptr K2(new Cal3_S2Stereo(1500, 1200, 0, 640, 480, b)); static SmartStereoProjectionParams params; // static bool manageDegeneracy = true; // Create a noise model for the pixel error static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1)); // Convenience for named keys using symbol_shorthand::L; using symbol_shorthand::X; // tests data static Symbol x1('X', 1); static Symbol x2('X', 2); static Symbol x3('X', 3); static Symbol body_P_cam1_key('P', 1); static Symbol body_P_cam2_key('P', 2); static Symbol body_P_cam3_key('P', 3); static Key poseKey1(x1); static Key poseExtrinsicKey1(body_P_cam1_key); static Key poseExtrinsicKey2(body_P_cam2_key); static StereoPoint2 measurement1( 323.0, 300.0, 240.0); // potentially use more reasonable measurement value? static StereoPoint2 measurement2( 350.0, 200.0, 240.0); // potentially use more reasonable measurement value? static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); static double missing_uR = std::numeric_limits::quiet_NaN(); vector stereo_projectToMultipleCameras(const StereoCamera& cam1, const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) { vector measurements_cam; StereoPoint2 cam1_uv1 = cam1.project(landmark); StereoPoint2 cam2_uv1 = cam2.project(landmark); StereoPoint2 cam3_uv1 = cam3.project(landmark); measurements_cam.push_back(cam1_uv1); measurements_cam.push_back(cam2_uv1); measurements_cam.push_back(cam3_uv1); return measurements_cam; } LevenbergMarquardtParams lm_params; } // namespace /* ************************************************************************* */ TEST( SmartStereoProjectionFactorPP, params) { SmartStereoProjectionParams p; // check default values and "get" EXPECT(p.getLinearizationMode() == HESSIAN); EXPECT(p.getDegeneracyMode() == IGNORE_DEGENERACY); EXPECT_DOUBLES_EQUAL(p.getRetriangulationThreshold(), 1e-5, 1e-9); EXPECT(p.getVerboseCheirality() == false); EXPECT(p.getThrowCheirality() == false); // check "set" p.setLinearizationMode(JACOBIAN_SVD); p.setDegeneracyMode(ZERO_ON_DEGENERACY); p.setRankTolerance(100); p.setEnableEPI(true); p.setLandmarkDistanceThreshold(200); p.setDynamicOutlierRejectionThreshold(3); p.setRetriangulationThreshold(1e-2); EXPECT(p.getLinearizationMode() == JACOBIAN_SVD); EXPECT(p.getDegeneracyMode() == ZERO_ON_DEGENERACY); EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().rankTolerance, 100, 1e-5); EXPECT(p.getTriangulationParameters().enableEPI == true); EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().landmarkDistanceThreshold, 200, 1e-5); EXPECT_DOUBLES_EQUAL(p.getTriangulationParameters().dynamicOutlierRejectionThreshold, 3, 1e-5); EXPECT_DOUBLES_EQUAL(p.getRetriangulationThreshold(), 1e-2, 1e-5); } /* ************************************************************************* */ TEST( SmartStereoProjectionFactorPP, Constructor) { SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model)); } /* ************************************************************************* */ TEST( SmartStereoProjectionFactorPP, Constructor2) { SmartStereoProjectionFactorPP factor1(model, params); } /* ************************************************************************* */ TEST( SmartStereoProjectionFactorPP, Constructor3) { SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model)); factor1->add(measurement1, poseKey1, poseExtrinsicKey1, K); } /* ************************************************************************* */ TEST( SmartStereoProjectionFactorPP, Constructor4) { SmartStereoProjectionFactorPP factor1(model, params); factor1.add(measurement1, poseKey1, poseExtrinsicKey1, K); } /* ************************************************************************* */ TEST( SmartStereoProjectionFactorPP, Equals ) { SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model)); factor1->add(measurement1, poseKey1, poseExtrinsicKey1, K); SmartStereoProjectionFactorPP::shared_ptr factor2(new SmartStereoProjectionFactorPP(model)); factor2->add(measurement1, poseKey1, poseExtrinsicKey1, K); // check these are equal EXPECT(assert_equal(*factor1, *factor2)); SmartStereoProjectionFactorPP::shared_ptr factor3(new SmartStereoProjectionFactorPP(model)); factor3->add(measurement2, poseKey1, poseExtrinsicKey1, K); // check these are different EXPECT(!factor1->equals(*factor3)); SmartStereoProjectionFactorPP::shared_ptr factor4(new SmartStereoProjectionFactorPP(model)); factor4->add(measurement1, poseKey1, poseExtrinsicKey2, K); // check these are different EXPECT(!factor1->equals(*factor4)); } /* *************************************************************************/ TEST_UNSAFE( SmartStereoProjectionFactorPP, noiseless_error_identityExtrinsics ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera w_Camera_cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera w_Camera_cam2(w_Pose_cam2, K2); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate StereoPoint2 cam1_uv = w_Camera_cam1.project(landmark); StereoPoint2 cam2_uv = w_Camera_cam2.project(landmark); Values values; values.insert(x1, w_Pose_cam1); values.insert(x2, w_Pose_cam2); values.insert(body_P_cam1_key, Pose3::Identity()); values.insert(body_P_cam2_key, Pose3::Identity()); SmartStereoProjectionFactorPP factor1(model); factor1.add(cam1_uv, x1, body_P_cam1_key, K2); factor1.add(cam2_uv, x2, body_P_cam2_key, K2); double actualError = factor1.error(values); double expectedError = 0.0; EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7); SmartStereoProjectionFactorPP::Cameras cameras = factor1.cameras(values); double actualError2 = factor1.totalReprojectionError(cameras); EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7); } /* *************************************************************************/ TEST_UNSAFE( SmartStereoProjectionFactorPP, noiseless_error_multipleExtrinsics ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera w_Camera_cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera w_Camera_cam2(w_Pose_cam2, K2); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate StereoPoint2 cam1_uv = w_Camera_cam1.project(landmark); StereoPoint2 cam2_uv = w_Camera_cam2.project(landmark); Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., 0.0), Point3(0, 1, 0)); Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0., 0.0), Point3(1, 1, 0)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse()); Values values; values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(body_P_cam1_key, body_Pose_cam1); values.insert(body_P_cam2_key, body_Pose_cam2); SmartStereoProjectionFactorPP factor1(model); factor1.add(cam1_uv, x1, body_P_cam1_key, K2); factor1.add(cam2_uv, x2, body_P_cam2_key, K2); double actualError = factor1.error(values); double expectedError = 0.0; EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7); SmartStereoProjectionFactorPP::Cameras cameras = factor1.cameras(values); double actualError2 = factor1.totalReprojectionError(cameras); EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7); } /* *************************************************************************/ TEST( SmartProjectionPoseFactor, noiseless_error_multipleExtrinsics_missingMeasurements ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera w_Camera_cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera w_Camera_cam2(w_Pose_cam2, K2); // landmark ~5 meters in front of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate StereoPoint2 cam1_uv = w_Camera_cam1.project(landmark); StereoPoint2 cam2_uv = w_Camera_cam2.project(landmark); StereoPoint2 cam2_uv_right_missing(cam2_uv.uL(),missing_uR,cam2_uv.v()); // fake extrinsic calibration Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1), Point3(0, 1, 0)); Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0.1, 1.0), Point3(1, 1, 1)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse()); Values values; values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(body_P_cam1_key, body_Pose_cam1); values.insert(body_P_cam2_key, body_Pose_cam2); SmartStereoProjectionFactorPP factor1(model); factor1.add(cam1_uv, x1, body_P_cam1_key, K2); factor1.add(cam2_uv_right_missing, x2, body_P_cam2_key, K2); double actualError = factor1.error(values); double expectedError = 0.0; EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7); // TEST TRIANGULATION WITH MISSING VALUES: i) right pixel of second camera is missing: SmartStereoProjectionFactorPP::Cameras cameras = factor1.cameras(values); double actualError2 = factor1.totalReprojectionError(cameras); EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7); // The following are generically exercising the triangulation CameraSet cams{w_Camera_cam1, w_Camera_cam2}; TriangulationResult result = factor1.triangulateSafe(cams); CHECK(result); EXPECT(assert_equal(landmark, *result, 1e-7)); // TEST TRIANGULATION WITH MISSING VALUES: ii) right pixels of both cameras are missing: SmartStereoProjectionFactorPP factor2(model); StereoPoint2 cam1_uv_right_missing(cam1_uv.uL(),missing_uR,cam1_uv.v()); factor2.add(cam1_uv_right_missing, x1, body_P_cam1_key, K2); factor2.add(cam2_uv_right_missing, x2, body_P_cam2_key, K2); result = factor2.triangulateSafe(cams); CHECK(result); EXPECT(assert_equal(landmark, *result, 1e-7)); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, noisy_error_multipleExtrinsics ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera w_Camera_cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera w_Camera_cam2(w_Pose_cam2, K2); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate StereoPoint2 pixelError(0.2, 0.2, 0); StereoPoint2 cam1_uv = w_Camera_cam1.project(landmark) + pixelError; StereoPoint2 cam2_uv = w_Camera_cam2.project(landmark); // fake extrinsic calibration Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1), Point3(0, 1, 0)); Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0.1, 1.0), Point3(1, 1, 1)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse()); Values values; values.insert(x1, w_Pose_body1); Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10), Point3(0.5, 0.1, 0.3)); values.insert(x2, w_Pose_body2.compose(noise_pose)); values.insert(body_P_cam1_key, body_Pose_cam1); values.insert(body_P_cam2_key, body_Pose_cam2); SmartStereoProjectionFactorPP::shared_ptr factor1(new SmartStereoProjectionFactorPP(model)); factor1->add(cam1_uv, x1, body_P_cam1_key, K); factor1->add(cam2_uv, x2, body_P_cam2_key, K); double actualError1 = factor1->error(values); SmartStereoProjectionFactorPP::shared_ptr factor2(new SmartStereoProjectionFactorPP(model)); vector measurements; measurements.push_back(cam1_uv); measurements.push_back(cam2_uv); vector > Ks; ///< shared pointer to calibration object (one for each camera) Ks.push_back(K); Ks.push_back(K); KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam2_key); factor2->add(measurements, poseKeys, extrinsicKeys, Ks); double actualError2 = factor2->error(values); DOUBLES_EQUAL(actualError1, actualError2, 1e-7); DOUBLES_EQUAL(actualError1, 5381978, 1); // value freeze } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, 3poses_optimization_multipleExtrinsics ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(w_Pose_cam2, K2); // create third camera 1 meter above the first camera Pose3 w_Pose_cam3 = w_Pose_cam1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(w_Pose_cam3, K2); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_l1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_l2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_l3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); poseKeys.push_back(x3); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam2_key); extrinsicKeys.push_back(body_P_cam3_key); SmartStereoProjectionParams smart_params; smart_params.triangulation.enableEPI = true; SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // Values Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0)); Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0.1, 1.0),Point3(1, 1, 1)); Pose3 body_Pose_cam3 = Pose3::Identity(); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse()); Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam3.inverse()); Values values; Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1)); // smaller noise values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(x3, w_Pose_body3); values.insert(body_P_cam1_key, body_Pose_cam1); values.insert(body_P_cam2_key, body_Pose_cam2); // initialize third calibration with some noise, we expect it to move back to original pose3 values.insert(body_P_cam3_key, body_Pose_cam3 * noise_pose); // Graph NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, w_Pose_body1, noisePrior); graph.addPrior(x2, w_Pose_body2, noisePrior); graph.addPrior(x3, w_Pose_body3, noisePrior); // we might need some prior on the calibration too graph.addPrior(body_P_cam1_key, body_Pose_cam1, noisePrior); graph.addPrior(body_P_cam2_key, body_Pose_cam2, noisePrior); EXPECT( assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at(x3) * values.at(body_P_cam3_key))); // cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl; EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error (note - this also matches error below) // get triangulated landmarks from smart factors Point3 landmark1_smart = *smartFactor1->point(); Point3 landmark2_smart = *smartFactor2->point(); Point3 landmark3_smart = *smartFactor3->point(); // cost is large before optimization double initialErrorSmart = graph.error(values); EXPECT_DOUBLES_EQUAL(833953.92789459461, initialErrorSmart, 1e-5); Values result; gttic_(SmartStereoProjectionFactorPP); LevenbergMarquardtOptimizer optimizer(graph, values, lm_params); result = optimizer.optimize(); gttoc_(SmartStereoProjectionFactorPP); tictoc_finishedIteration_(); // cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl; EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5); GaussianFactorGraph::shared_ptr GFG = graph.linearize(result); VectorValues delta = GFG->optimize(); VectorValues expected = VectorValues::Zero(delta); EXPECT(assert_equal(expected, delta, 1e-6)); // result.print("results of 3 camera, 3 landmark optimization \n"); EXPECT(assert_equal(body_Pose_cam3, result.at(body_P_cam3_key))); // *************************************************************** // Same problem with regular Stereo factors, expect same error! // **************************************************************** // add landmarks to values Values values2; values2.insert(x1, w_Pose_cam1); // note: this is the *camera* pose now values2.insert(x2, w_Pose_cam2); values2.insert(x3, w_Pose_cam3 * noise_pose); // equivalent to perturbing the extrinsic calibration values2.insert(L(1), landmark1_smart); values2.insert(L(2), landmark2_smart); values2.insert(L(3), landmark3_smart); // add factors NonlinearFactorGraph graph2; graph2.addPrior(x1, w_Pose_cam1, noisePrior); graph2.addPrior(x2, w_Pose_cam2, noisePrior); typedef GenericStereoFactor ProjectionFactor; bool verboseCheirality = true; // NOTE: we cannot repeate this with ProjectionFactor, since they are not suitable for stereo calibration graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality)); graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality)); // cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl; EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values2), 1e-7); EXPECT_DOUBLES_EQUAL(initialErrorSmart, graph2.error(values2), 1e-7); // identical to previous case! LevenbergMarquardtOptimizer optimizer2(graph2, values2, lm_params); Values result2 = optimizer2.optimize(); EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, 3poses_error_sameExtrinsicKey ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(w_Pose_cam2, K2); // create third camera 1 meter above the first camera Pose3 w_Pose_cam3 = w_Pose_cam1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(w_Pose_cam3, K2); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_l1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_l2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_l3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); poseKeys.push_back(x3); Symbol body_P_cam_key('P', 0); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); SmartStereoProjectionParams smart_params; smart_params.triangulation.enableEPI = true; SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // Values Pose3 body_Pose_cam = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam.inverse()); Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam.inverse()); Values values; // all noiseless Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.01, 0.01, 0.01)); // smaller noise values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(x3, w_Pose_body3); values.insert(body_P_cam_key, body_Pose_cam); // Graph NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, w_Pose_body1, noisePrior); graph.addPrior(x2, w_Pose_body2, noisePrior); graph.addPrior(x3, w_Pose_body3, noisePrior); // cost is large before optimization double initialErrorSmart = graph.error(values); EXPECT_DOUBLES_EQUAL(0.0, initialErrorSmart, 1e-5); // initial guess is noisy, so nonzero error } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, 3poses_noisy_error_sameExtrinsicKey ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(w_Pose_cam2, K2); // create third camera 1 meter above the first camera Pose3 w_Pose_cam3 = w_Pose_cam1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(w_Pose_cam3, K2); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_l1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_l2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_l3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); double initialError_expected, initialError_actual; { KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); poseKeys.push_back(x3); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam2_key); extrinsicKeys.push_back(body_P_cam3_key); SmartStereoProjectionParams smart_params; smart_params.triangulation.enableEPI = true; SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // Values Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0)); Pose3 body_Pose_cam2 = body_Pose_cam1; Pose3 body_Pose_cam3 = body_Pose_cam1; Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse()); Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam3.inverse()); Values values; Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1)); // smaller noise values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(x3, w_Pose_body3); values.insert(body_P_cam1_key, body_Pose_cam1 * noise_pose); values.insert(body_P_cam2_key, body_Pose_cam2 * noise_pose); // initialize third calibration with some noise, we expect it to move back to original pose3 values.insert(body_P_cam3_key, body_Pose_cam3 * noise_pose); // Graph NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, w_Pose_body1, noisePrior); graph.addPrior(x2, w_Pose_body2, noisePrior); graph.addPrior(x3, w_Pose_body3, noisePrior); initialError_expected = graph.error(values); } { KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); poseKeys.push_back(x3); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam1_key); SmartStereoProjectionParams smart_params; smart_params.triangulation.enableEPI = true; SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // Values Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam1.inverse()); Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam1.inverse()); Values values; Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1)); // smaller noise values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(x3, w_Pose_body3); values.insert(body_P_cam1_key, body_Pose_cam1 * noise_pose); // Graph NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, w_Pose_body1, noisePrior); graph.addPrior(x2, w_Pose_body2, noisePrior); graph.addPrior(x3, w_Pose_body3, noisePrior); initialError_actual = graph.error(values); } //std::cout << " initialError_expected " << initialError_expected << std::endl; EXPECT_DOUBLES_EQUAL(initialError_expected, initialError_actual, 1e-7); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, 3poses_optimization_sameExtrinsicKey ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(w_Pose_cam2, K2); // create third camera 1 meter above the first camera Pose3 w_Pose_cam3 = w_Pose_cam1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(w_Pose_cam3, K2); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_l1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_l2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_l3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); poseKeys.push_back(x3); Symbol body_P_cam_key('P', 0); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); SmartStereoProjectionParams smart_params; smart_params.triangulation.enableEPI = true; SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2); // relevant poses: Pose3 body_Pose_cam = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam.inverse()); Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam.inverse()); // Graph const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, w_Pose_body1, noisePrior); graph.addPrior(x2, w_Pose_body2, noisePrior); graph.addPrior(x3, w_Pose_body3, noisePrior); // we might need some prior on the calibration too // graph.addPrior(body_P_cam_key, body_Pose_cam, noisePrior); // no need! the measurements will fix this! // Values Values values; Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.01, 0.01, 0.01)); // smaller noise values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(x3, w_Pose_body3); values.insert(body_P_cam_key, body_Pose_cam*noise_pose); // cost is large before optimization double initialErrorSmart = graph.error(values); EXPECT_DOUBLES_EQUAL(31986.961831653316, initialErrorSmart, 1e-5); // initial guess is noisy, so nonzero error ///////////////////////////////////////////////////////////////// // What the factor is doing is the following Schur complement math (this matches augmentedHessianPP in code): // size_t numMeasurements = measured_.size(); // Matrix F = Matrix::Zero(3*numMeasurements, 6 * nrUniqueKeys); // for(size_t k=0; k( 3*k , 6*keyToSlotMap[key_body] ) = Fs[k].block<3,6>(0,0); // F.block<3,6>( 3*k , 6*keyToSlotMap[key_cal] ) = Fs[k].block<3,6>(0,6); // } // Matrix augH = Matrix::Zero(6*nrUniqueKeys+1,6*nrUniqueKeys+1); // augH.block(0,0,6*nrUniqueKeys,6*nrUniqueKeys) = F.transpose() * F - F.transpose() * E * P * E.transpose() * F; // Matrix infoVec = F.transpose() * b - F.transpose() * E * P * E.transpose() * b; // augH.block(0,6*nrUniqueKeys,6*nrUniqueKeys,1) = infoVec; // augH.block(6*nrUniqueKeys,0,1,6*nrUniqueKeys) = infoVec.transpose(); // augH(6*nrUniqueKeys,6*nrUniqueKeys) = b.squaredNorm(); // // The following is close to zero: // std::cout << "norm diff: \n"<< Matrix(augH - Matrix(augmentedHessianUniqueKeys.selfadjointView())).lpNorm() << std::endl; // std::cout << "TEST MATRIX:" << std::endl; // augmentedHessianUniqueKeys = SymmetricBlockMatrix(dims, augH); ///////////////////////////////////////////////////////////////// Values result; gttic_(SmartStereoProjectionFactorPP); LevenbergMarquardtOptimizer optimizer(graph, values, lm_params); result = optimizer.optimize(); gttoc_(SmartStereoProjectionFactorPP); tictoc_finishedIteration_(); EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5); // This passes on my machine but gets and indeterminant linear system exception in CI. // This is a very redundant test, so it's not a problem to omit. // GaussianFactorGraph::shared_ptr GFG = graph.linearize(result); // Matrix H = GFG->hessian().first; // double det = H.determinant(); // // std::cout << "det " << det << std::endl; // det = 2.27581e+80 (so it's not underconstrained) // VectorValues delta = GFG->optimize(); // VectorValues expected = VectorValues::Zero(delta); // EXPECT(assert_equal(expected, delta, 1e-4)); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, 3poses_optimization_2ExtrinsicKeys ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(w_Pose_cam1, K2); // create second camera 1 meter to the right of first camera Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(w_Pose_cam2, K2); // create third camera 1 meter above the first camera Pose3 w_Pose_cam3 = w_Pose_cam1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(w_Pose_cam3, K2); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_l1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_l2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_l3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); KeyVector poseKeys; poseKeys.push_back(x1); poseKeys.push_back(x2); poseKeys.push_back(x3); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam1_key); extrinsicKeys.push_back(body_P_cam3_key); SmartStereoProjectionParams smart_params; smart_params.triangulation.enableEPI = true; SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params)); smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2); // relevant poses: Pose3 body_Pose_cam = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0)); Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam.inverse()); Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam.inverse()); Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam.inverse()); // Graph const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, w_Pose_body1, noisePrior); graph.addPrior(x2, w_Pose_body2, noisePrior); graph.addPrior(x3, w_Pose_body3, noisePrior); // graph.addPrior(body_P_cam1_key, body_Pose_cam, noisePrior); // we might need some prior on the calibration too // graph.addPrior(body_P_cam_key, body_Pose_cam, noisePrior); // no need! the measurements will fix this! // Values Values values; Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.01, 0.01, 0.01)); // smaller noise values.insert(x1, w_Pose_body1); values.insert(x2, w_Pose_body2); values.insert(x3, w_Pose_body3); values.insert(body_P_cam1_key, body_Pose_cam*noise_pose); values.insert(body_P_cam3_key, body_Pose_cam*noise_pose); // cost is large before optimization double initialErrorSmart = graph.error(values); EXPECT_DOUBLES_EQUAL(31986.961831653316, initialErrorSmart, 1e-5); // initial guess is noisy, so nonzero error Values result; gttic_(SmartStereoProjectionFactorPP); LevenbergMarquardtOptimizer optimizer(graph, values, lm_params); result = optimizer.optimize(); gttoc_(SmartStereoProjectionFactorPP); tictoc_finishedIteration_(); EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5); // NOTE: the following would fail since the problem is underconstrained (while LM above works just fine!) // GaussianFactorGraph::shared_ptr GFG = graph.linearize(result); // VectorValues delta = GFG->optimize(); // VectorValues expected = VectorValues::Zero(delta); // EXPECT(assert_equal(expected, delta, 1e-4)); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, monocular_multipleExtrinsicKeys ){ // make a realistic calibration matrix double fov = 60; // degrees size_t w=640,h=480; Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 cameraPose1 = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // body poses Pose3 cameraPose2 = cameraPose1 * Pose3(Rot3(), Point3(1,0,0)); Pose3 cameraPose3 = cameraPose1 * Pose3(Rot3(), Point3(0,-1,0)); PinholeCamera cam1(cameraPose1, *K); // with camera poses PinholeCamera cam2(cameraPose2, *K); PinholeCamera cam3(cameraPose3, *K); // create arbitrary body_Pose_sensor (transforms from sensor to body) Pose3 sensor_to_body = Pose3(Rot3::Ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(1, 1, 1)); // Pose3(); // // These are the poses we want to estimate, from camera measurements Pose3 bodyPose1 = cameraPose1.compose(sensor_to_body.inverse()); Pose3 bodyPose2 = cameraPose2.compose(sensor_to_body.inverse()); Pose3 bodyPose3 = cameraPose3.compose(sensor_to_body.inverse()); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(5, 0, 3.0); Point2Vector measurements_cam1, measurements_cam2, measurements_cam3; // Project three landmarks into three cameras projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1); projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2); projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3); // convert measurement to (degenerate) stereoPoint2 (with right pixel being NaN) vector measurements_cam1_stereo, measurements_cam2_stereo, measurements_cam3_stereo; for(size_t k=0; k(body_P_cam_key), 1e-1)); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, landmarkDistance ) { // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(pose3, K); KeyVector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); Symbol body_P_cam_key('P', 0); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); SmartStereoProjectionParams params; params.setLinearizationMode(HESSIAN); params.setLandmarkDistanceThreshold(2); SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, params)); smartFactor1->add(measurements_cam1, views, extrinsicKeys, K); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params)); smartFactor2->add(measurements_cam2, views, extrinsicKeys, K); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params)); smartFactor3->add(measurements_cam3, views, extrinsicKeys, K); // create graph const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.addPrior(x1, pose1, noisePrior); graph.addPrior(x2, pose2, noisePrior); graph.addPrior(body_P_cam_key, Pose3::Identity(), noisePrior); // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3 * noise_pose); values.insert(body_P_cam_key, Pose3::Identity()); // All smart factors are disabled and pose should remain where it is Values result; LevenbergMarquardtOptimizer optimizer(graph, values, lm_params); result = optimizer.optimize(); EXPECT(assert_equal(values.at(x3), result.at(x3), 1e-5)); EXPECT_DOUBLES_EQUAL(graph.error(values), graph.error(result), 1e-5); } /* *************************************************************************/ TEST( SmartStereoProjectionFactorPP, dynamicOutlierRejection ) { KeyVector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); Symbol body_P_cam_key('P', 0); KeyVector extrinsicKeys; extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); extrinsicKeys.push_back(body_P_cam_key); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0)); StereoCamera cam3(pose3, K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); Point3 landmark4(5, -0.5, 1); // 1. Project four landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); vector measurements_cam4 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark4); measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10, 10, 1); // add outlier SmartStereoProjectionParams params; params.setLinearizationMode(HESSIAN); params.setDynamicOutlierRejectionThreshold(1); SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, params)); smartFactor1->add(measurements_cam1, views, extrinsicKeys, K); SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, params)); smartFactor2->add(measurements_cam2, views, extrinsicKeys, K); SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, params)); smartFactor3->add(measurements_cam3, views, extrinsicKeys, K); SmartStereoProjectionFactorPP::shared_ptr smartFactor4(new SmartStereoProjectionFactorPP(model, params)); smartFactor4->add(measurements_cam4, views, extrinsicKeys, K); // same as factor 4, but dynamic outlier rejection is off SmartStereoProjectionFactorPP::shared_ptr smartFactor4b(new SmartStereoProjectionFactorPP(model)); smartFactor4b->add(measurements_cam4, views, extrinsicKeys, K); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(smartFactor4); graph.addPrior(x1, pose1, noisePrior); graph.addPrior(x2, pose2, noisePrior); graph.addPrior(x3, pose3, noisePrior); Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3); values.insert(body_P_cam_key, Pose3::Identity()); EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9); EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9); EXPECT_DOUBLES_EQUAL(0, smartFactor3->error(values), 1e-9); // zero error due to dynamic outlier rejection EXPECT_DOUBLES_EQUAL(0, smartFactor4->error(values), 1e-9); // dynamic outlier rejection is off EXPECT_DOUBLES_EQUAL(6147.3947317473921, smartFactor4b->error(values), 1e-9); // Factors 1-3 should have valid point, factor 4 should not EXPECT(smartFactor1->point()); EXPECT(smartFactor2->point()); EXPECT(smartFactor3->point()); EXPECT(smartFactor4->point().outlier()); EXPECT(smartFactor4b->point()); // Factor 4 is disabled, pose 3 stays put Values result; LevenbergMarquardtOptimizer optimizer(graph, values, lm_params); result = optimizer.optimize(); EXPECT(assert_equal(Pose3::Identity(), result.at(body_P_cam_key))); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */