/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testSmartStereoFactor_iSAM2.cpp * @brief Unit tests for ProjectionFactor Class * @author Jose Luis Blanco-Claraco * @date May 2019 * * @note Originally based on ISAM2_SmartFactorStereo.cpp by Nghia Ho */ #include #include #include #include #include #include #include #include #include #include #include // Set to 1 to enable verbose output of intermediary results #define TEST_VERBOSE_OUTPUT 0 #if TEST_VERBOSE_OUTPUT #define TEST_COUT(ARGS_) std::cout << ARGS_ #else #define TEST_COUT(ARGS_) void(0) #endif // Tolerance for ground-truth pose comparison: static const double tol = 1e-3; // Synthetic dataset generated with rwt // (https://github.com/jlblancoc/recursive-world-toolkit) // Camera parameters const double fx = 200.0; const double fy = 150.0; const double cx = 512.0; const double cy = 384.0; const double baseline = 0.2; // meters using timestep_t = std::size_t; using lm_id_t = int; struct stereo_meas_t { stereo_meas_t(lm_id_t id, double lu, double ru, double v_lr) : lm_id{id}, left_u{lu}, right_u{ru}, v{v_lr} {} lm_id_t lm_id{-1}; // landmark id double left_u{0}, right_u{0}, v{0}; }; static std::map> dataset = { {0, {{0, 911.99993896, 712.00000000, 384.0}, {159, 311.99996948, 211.99996948, 384.0}, {3, 378.66665649, 312.00000000, 384.0}, {2, 645.33331299, 578.66662598, 384.0}, {157, 111.99994659, 11.99993896, 384.0}, {4, 578.66662598, 545.33331299, 384.0}, {5, 445.33331299, 412.00000000, 384.0}, {6, 562.00000000, 537.00000000, 384.0}}}, {1, {{0, 1022.06353760, 762.57519531, 384.0}, {159, 288.30487061, 177.80273438, 384.0}, {2, 655.30645752, 583.12127686, 384.0}, {3, 368.60937500, 297.43176270, 384.0}, {4, 581.82666016, 547.16766357, 384.0}, {5, 443.66183472, 409.23681641, 384.0}, {6, 564.35980225, 538.62115479, 384.0}, {7, 461.66418457, 436.05477905, 384.0}, {8, 550.32220459, 531.75256348, 384.0}, {9, 476.17767334, 457.67541504, 384.0}}}, {2, {{159, 257.97128296, 134.26287842, 384.0}, {2, 666.87255859, 588.07275391, 384.0}, {3, 356.53823853, 280.10061646, 384.0}, {4, 585.10949707, 548.99212646, 384.0}, {5, 441.66403198, 406.05108643, 384.0}, {6, 566.75402832, 540.21868896, 384.0}, {7, 461.16207886, 434.90002441, 384.0}, {8, 552.28387451, 533.30230713, 384.0}, {9, 476.63549805, 457.79418945, 384.0}, {10, 546.48394775, 530.53009033, 384.0}}}, {3, {{159, 218.10592651, 77.30914307, 384.0}, {2, 680.54644775, 593.68103027, 384.0}, {3, 341.92507935, 259.28231812, 384.0}, {4, 588.53289795, 550.80499268, 384.0}, {5, 439.29989624, 402.39105225, 384.0}, {6, 569.18627930, 541.78991699, 384.0}, {7, 460.47863770, 433.51678467, 384.0}, {8, 554.24902344, 534.82952881, 384.0}, {9, 477.00451660, 457.80438232, 384.0}, {10, 548.33770752, 532.07501221, 384.0}, {11, 483.58688354, 467.47830200, 384.0}, {12, 542.36785889, 529.29321289, 384.0}}}, {4, {{2, 697.09454346, 600.18432617, 384.0}, {3, 324.03643799, 233.97094727, 384.0}, {4, 592.11877441, 552.60449219, 384.0}, {5, 436.52197266, 398.19531250, 384.0}, {6, 571.66101074, 543.33209229, 384.0}, {7, 459.59658813, 431.88333130, 384.0}, {8, 556.21801758, 536.33258057, 384.0}, {9, 477.27893066, 457.69882202, 384.0}, {10, 550.18920898, 533.60003662, 384.0}, {11, 484.24472046, 467.86862183, 384.0}, {12, 544.14727783, 530.86157227, 384.0}, {13, 491.26141357, 478.11267090, 384.0}, {14, 541.29949951, 529.57086182, 384.0}, {15, 494.58111572, 482.95935059, 384.0}}}}; // clang-format off /* % Ground truth path of the SENSOR, and the ROBOT % STEP X Y Z QR QX QY QZ | X Y Z QR QX QY QZ ---------------------------------------------------------------------------------------------------------------------------------------- 0 0.000000 0.000000 0.000000 0.500000 -0.500000 0.500000 -0.500000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1 0.042019 -0.008403 0.000000 0.502446 -0.502446 0.497542 -0.497542 0.042019 -0.008403 0.000000 0.999988 0.000000 0.000000 0.004905 2 0.084783 -0.016953 0.000000 0.504879 -0.504879 0.495073 -0.495073 0.084783 -0.016953 0.000000 0.999952 0.000000 0.000000 0.009806 3 0.128305 -0.025648 0.000000 0.507299 -0.507299 0.492592 -0.492592 0.128305 -0.025648 0.000000 0.999892 0.000000 0.000000 0.014707 4 0.172605 -0.034490 0.000000 0.509709 -0.509709 0.490098 -0.490098 0.172605 -0.034490 0.000000 0.999808 0.000000 0.000000 0.019611 */ // clang-format on // Ground truth using camera pose = vehicle frame // The table above uses: // camera +x = vehicle -y // camera +y = vehicle -z // camera +z = vehicle +x static const std::map gt_positions = { {0, {0.000000, 0.000000, 0.0}}, {1, {0.042019, -0.008403, 0.0}}, {2, {0.084783, -0.016953, 0.0}}, {3, {0.128305, -0.025648, 0.0}}, {4, {0.172605, -0.034490, 0.0}}}; // Batch version, to compare against iSAM2 solution. TEST(testISAM2SmartFactor, Stereo_Batch) { TEST_COUT("============ Running: Batch ============\n"); using namespace gtsam; using symbol_shorthand::V; using symbol_shorthand::X; const auto K = std::make_shared(fx, fy, .0, cx, cy, baseline); // Pose prior - at identity auto priorPoseNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.2), Vector3::Constant(0.2)).finished()); // Map: landmark_id => smart_factor_index inside iSAM2 std::map lm2factor; // Storage of smart factors: std::map smartFactors; NonlinearFactorGraph batch_graph; Values batch_values; // Run one timestep at once: for (const auto &entries : dataset) { // 1) Process new observations: // ------------------------------ const auto kf_id = entries.first; const std::vector &obs = entries.second; for (const stereo_meas_t &stObs : obs) { if (smartFactors.count(stObs.lm_id) == 0) { auto noise = noiseModel::Isotropic::Sigma(3, 0.1); SmartProjectionParams parm(HESSIAN, ZERO_ON_DEGENERACY); smartFactors[stObs.lm_id] = std::make_shared(noise, parm); batch_graph.push_back(smartFactors[stObs.lm_id]); } TEST_COUT("Adding stereo observation from KF #" << kf_id << " for LM #" << stObs.lm_id << "\n"); smartFactors[stObs.lm_id]->add( StereoPoint2(stObs.left_u, stObs.right_u, stObs.v), X(kf_id), K); } // prior, for the first keyframe: if (kf_id == 0) { batch_graph.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise); } batch_values.insert(X(kf_id), Pose3::Identity()); } LevenbergMarquardtParams parameters; #if TEST_VERBOSE_OUTPUT parameters.verbosity = NonlinearOptimizerParams::LINEAR; parameters.verbosityLM = LevenbergMarquardtParams::TRYDELTA; #endif LevenbergMarquardtOptimizer lm(batch_graph, batch_values, parameters); Values finalEstimate = lm.optimize(); #if TEST_VERBOSE_OUTPUT finalEstimate.print("LevMarq estimate:"); #endif // GT: // camera +x = vehicle -y // camera +y = vehicle -z // camera +z = vehicle +x for (const auto > : gt_positions) { const Pose3 p = finalEstimate.at(X(gt.first)); EXPECT(assert_equal(p.x(), -gt.second.y(), tol)); EXPECT(assert_equal(p.y(), -gt.second.z(), tol)); EXPECT(assert_equal(p.z(), gt.second.x(), tol)); } } TEST(testISAM2SmartFactor, Stereo_iSAM2) { TEST_COUT("======= Running: iSAM2 ==========\n"); #if TEST_VERBOSE_OUTPUT SETDEBUG("ISAM2 update", true); // SETDEBUG("ISAM2 update verbose",true); #endif using namespace gtsam; using symbol_shorthand::V; using symbol_shorthand::X; const auto K = std::make_shared(fx, fy, .0, cx, cy, baseline); ISAM2Params parameters; parameters.relinearizeThreshold = 0.01; parameters.evaluateNonlinearError = true; // Do not cache smart factors: parameters.cacheLinearizedFactors = false; // Important: must set relinearizeSkip=1 to additional calls to update() to // have a real effect. parameters.relinearizeSkip = 1; ISAM2 isam(parameters); // Pose prior - at identity auto priorPoseNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.2), Vector3::Constant(0.2)).finished()); // Map: landmark_id => smart_factor_index inside iSAM2 std::map lm2factor; // Storage of smart factors: std::map smartFactors; Pose3 lastKeyframePose = Pose3::Identity(); // Run one timestep at once: for (const auto &entries : dataset) { // 1) Process new observations: // ------------------------------ const auto kf_id = entries.first; const std::vector &obs = entries.second; // Special instructions for using iSAM2 + smart factors: // Must fill factorNewAffectedKeys: FastMap factorNewAffectedKeys; NonlinearFactorGraph newFactors; // Map: factor index in the internal graph of iSAM2 => landmark_id std::map newFactor2lm; for (const stereo_meas_t &stObs : obs) { if (smartFactors.count(stObs.lm_id) == 0) { auto noise = noiseModel::Isotropic::Sigma(3, 0.1); SmartProjectionParams params(HESSIAN, ZERO_ON_DEGENERACY); smartFactors[stObs.lm_id] = std::make_shared(noise, params); newFactor2lm[newFactors.size()] = stObs.lm_id; newFactors.push_back(smartFactors[stObs.lm_id]); } else { // Only if the factor *already* existed: factorNewAffectedKeys[lm2factor.at(stObs.lm_id)].insert(X(kf_id)); } TEST_COUT("Adding stereo observation from KF #" << kf_id << " for LM #" << stObs.lm_id << "\n"); smartFactors[stObs.lm_id]->add( StereoPoint2(stObs.left_u, stObs.right_u, stObs.v), X(kf_id), K); } // prior, for the first keyframe: if (kf_id == 0) { newFactors.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise); } // 2) Run iSAM2: // ------------------------------ Values newValues; newValues.insert(X(kf_id), lastKeyframePose); TEST_COUT("Running iSAM2 for frame: " << kf_id << "\n"); ISAM2UpdateParams updateParams; updateParams.newAffectedKeys = std::move(factorNewAffectedKeys); ISAM2Result res = isam.update(newFactors, newValues, updateParams); for (const auto &f2l : newFactor2lm) lm2factor[f2l.second] = res.newFactorsIndices.at(f2l.first); TEST_COUT("error before1: " << res.errorBefore.value() << "\n"); TEST_COUT("error after1 : " << res.errorAfter.value() << "\n"); // Additional refining steps: ISAM2Result res2 = isam.update(); TEST_COUT("error before2: " << res2.errorBefore.value() << "\n"); TEST_COUT("error after2 : " << res2.errorAfter.value() << "\n"); Values currentEstimate = isam.calculateEstimate(); #if TEST_VERBOSE_OUTPUT currentEstimate.print("currentEstimate:"); #endif // Keep last KF pose as initial pose of the next one, to reduce the need // to run more non-linear iterations: lastKeyframePose = currentEstimate.at(X(kf_id)).cast(); } // end for each timestep Values finalEstimate = isam.calculateEstimate(); // GT: // camera +x = vehicle -y // camera +y = vehicle -z // camera +z = vehicle +x for (const auto > : gt_positions) { const Pose3 p = finalEstimate.at(X(gt.first)); EXPECT(assert_equal(p.x(), -gt.second.y(), tol)); EXPECT(assert_equal(p.y(), -gt.second.z(), tol)); EXPECT(assert_equal(p.z(), gt.second.x(), tol)); } } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); }