/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testProjectionFactorPPPC.cpp * @brief Unit tests for Pose+Transform+Calibration ProjectionFactor Class * @author Chris Beall * @date Jul 29, 2014 */ #include #include #include #include #include #include #include #include #include #include using namespace std::placeholders; using namespace std; using namespace gtsam; // make a realistic calibration matrix static double fov = 60; // degrees static size_t w=640,h=480; static Cal3_S2::shared_ptr K1(new Cal3_S2(fov,w,h)); // Create a noise model for the pixel error static SharedNoiseModel model(noiseModel::Unit::Create(2)); // Convenience for named keys using symbol_shorthand::X; using symbol_shorthand::L; using symbol_shorthand::T; using symbol_shorthand::K; typedef ProjectionFactorPPPC TestProjectionFactor; /* ************************************************************************* */ TEST( ProjectionFactorPPPC, nonStandard ) { ProjectionFactorPPPC f; } /* ************************************************************************* */ TEST( ProjectionFactorPPPC, Constructor) { Point2 measurement(323.0, 240.0); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // TODO: Actually check something } /* ************************************************************************* */ TEST( ProjectionFactorPPPC, Equals ) { // Create two identical factors and make sure they're equal Point2 measurement(323.0, 240.0); TestProjectionFactor factor1(measurement, model, X(1), T(1), L(1), K(1)); TestProjectionFactor factor2(measurement, model, X(1), T(1), L(1), K(1)); CHECK(assert_equal(factor1, factor2)); } /* ************************************************************************* */ TEST( ProjectionFactorPPPC, Error ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // Set the linearization point Pose3 pose(Rot3(), Point3(0,0,-6)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose, Pose3(), point, *K1)); // The expected error is (-3.0, 0.0) pixels / UnitCovariance Vector expectedError = Vector2(-3.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); } /* ************************************************************************* */ TEST( ProjectionFactorPPPC, ErrorWithTransform ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); Pose3 transform(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); TestProjectionFactor factor(measurement, model, X(1),T(1), L(1), K(1)); // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the error Vector actualError(factor.evaluateError(pose, transform, point, *K1)); // The expected error is (-3.0, 0.0) pixels / UnitCovariance Vector expectedError = Vector2(-3.0, 0.0); // Verify we get the expected error CHECK(assert_equal(expectedError, actualError, 1e-9)); } /* ************************************************************************* */ TEST( ProjectionFactorPPPC, Jacobian ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // Set the linearization point Pose3 pose(Rot3(), Point3(0,0,-6)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the Jacobians Matrix H1Actual, H2Actual, H3Actual, H4Actual; factor.evaluateError(pose, Pose3(), point, *K1, H1Actual, H2Actual, H3Actual, H4Actual); // The expected Jacobians Matrix H1Expected = (Matrix(2, 6) << 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.).finished(); Matrix H3Expected = (Matrix(2, 3) << 92.376, 0., 0., 0., 92.376, 0.).finished(); // Verify the Jacobians are correct CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); CHECK(assert_equal(H3Expected, H3Actual, 1e-3)); // Verify H2 and H4 with numerical derivatives Matrix H2Expected = numericalDerivative11( [&factor, &point, &pose](const Pose3& pose_arg) { return factor.evaluateError(pose, pose_arg, point, *K1); }, Pose3()); Matrix H4Expected = numericalDerivative11( [&factor, &point, &pose](const Cal3_S2& K_arg) { return factor.evaluateError(pose, Pose3(), point, K_arg); }, *K1); CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); CHECK(assert_equal(H4Expected, H4Actual, 1e-5)); } /* ************************************************************************* */ TEST( ProjectionFactorPPPC, JacobianWithTransform ) { // Create the factor with a measurement that is 3 pixels off in x Point2 measurement(323.0, 240.0); Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1)); // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); Point3 point(0.0, 0.0, 0.0); // Use the factor to calculate the Jacobians Matrix H1Actual, H2Actual, H3Actual, H4Actual; factor.evaluateError(pose, body_P_sensor, point, *K1, H1Actual, H2Actual, H3Actual, H4Actual); // The expected Jacobians Matrix H1Expected = (Matrix(2, 6) << -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376).finished(); Matrix H3Expected = (Matrix(2, 3) << 0., -92.376, 0., 0., 0., -92.376).finished(); // Verify the Jacobians are correct CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); CHECK(assert_equal(H3Expected, H3Actual, 1e-3)); // Verify H2 and H4 with numerical derivatives Matrix H2Expected = numericalDerivative11( [&factor, &pose, &point](const Pose3& body_P_sensor) { return factor.evaluateError(pose, body_P_sensor, point, *K1); }, body_P_sensor); Matrix H4Expected = numericalDerivative11( [&factor, &pose, &body_P_sensor, &point](const Cal3_S2& K) { return factor.evaluateError(pose, body_P_sensor, point, K); }, *K1); CHECK(assert_equal(H2Expected, H2Actual, 1e-5)); CHECK(assert_equal(H4Expected, H4Actual, 1e-5)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */