/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file TransformBtwRobotsUnaryFactorEM.h * @brief Unary factor for determining transformation between given trajectories of two robots * @author Vadim Indelman **/ #pragma once #include #include #include #include #include #include #include #include namespace gtsam { /** * A class for a measurement predicted by "between(config[key1],config[key2])" * @tparam VALUE the Value type * @ingroup slam */ template class TransformBtwRobotsUnaryFactorEM: public NonlinearFactor { public: typedef VALUE T; private: typedef TransformBtwRobotsUnaryFactorEM This; typedef NonlinearFactor Base; Key key_; VALUE measured_; /** The measurement */ Values valA_; // given values for robot A map\trajectory Values valB_; // given values for robot B map\trajectory Key keyA_; // key of robot A to which the measurement refers Key keyB_; // key of robot B to which the measurement refers // TODO: create function to update valA_ and valB_ SharedGaussian model_inlier_; SharedGaussian model_outlier_; double prior_inlier_; double prior_outlier_; bool flag_bump_up_near_zero_probs_; mutable bool start_with_M_step_; /** concept check by type */ GTSAM_CONCEPT_LIE_TYPE(T) GTSAM_CONCEPT_TESTABLE_TYPE(T) public: // shorthand for a smart pointer to a factor typedef typename std::shared_ptr shared_ptr; /** default constructor - only use for serialization */ TransformBtwRobotsUnaryFactorEM() {} /** Constructor */ TransformBtwRobotsUnaryFactorEM(Key key, const VALUE& measured, Key keyA, Key keyB, const Values& valA, const Values& valB, const SharedGaussian& model_inlier, const SharedGaussian& model_outlier, const double prior_inlier, const double prior_outlier, const bool flag_bump_up_near_zero_probs = false, const bool start_with_M_step = false) : Base(KeyVector{key}), key_(key), measured_(measured), keyA_(keyA), keyB_(keyB), model_inlier_(model_inlier), model_outlier_(model_outlier), prior_inlier_(prior_inlier), prior_outlier_(prior_outlier), flag_bump_up_near_zero_probs_(flag_bump_up_near_zero_probs), start_with_M_step_(false){ setValAValB(valA, valB); } ~TransformBtwRobotsUnaryFactorEM() override {} /** Clone */ NonlinearFactor::shared_ptr clone() const override { return std::make_shared(*this); } /** implement functions needed for Testable */ /** print */ void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override { std::cout << s << "TransformBtwRobotsUnaryFactorEM(" << keyFormatter(key_) << ")\n"; std::cout << "MR between factor keys: " << keyFormatter(keyA_) << "," << keyFormatter(keyB_) << "\n"; measured_.print(" measured: "); model_inlier_->print(" noise model inlier: "); model_outlier_->print(" noise model outlier: "); std::cout << "(prior_inlier, prior_outlier_) = (" << prior_inlier_ << "," << prior_outlier_ << ")\n"; // Base::print(s, keyFormatter); } /** equals */ bool equals(const NonlinearFactor& f, double tol=1e-9) const override { const This *t = dynamic_cast (&f); if(t && Base::equals(f)) return key_ == t->key_ && measured_.equals(t->measured_) && // model_inlier_->equals(t->model_inlier_ ) && // TODO: fix here // model_outlier_->equals(t->model_outlier_ ) && prior_outlier_ == t->prior_outlier_ && prior_inlier_ == t->prior_inlier_; else return false; } /** implement functions needed to derive from Factor */ /* ************************************************************************* */ void setValAValB(const Values& valA, const Values& valB){ if ( (!valA.exists(keyA_)) && (!valB.exists(keyA_)) && (!valA.exists(keyB_)) && (!valB.exists(keyB_)) ) throw("something is wrong!"); // TODO: make sure the two keys belong to different robots if (valA.exists(keyA_)){ valA_ = valA; valB_ = valB; } else { valA_ = valB; valB_ = valA; } } /* ************************************************************************* */ double error(const Values& x) const override { return whitenedError(x).squaredNorm(); } /* ************************************************************************* */ /** * Linearize a non-linearFactorN to get a GaussianFactor, * \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$ * Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$ */ /* This version of linearize recalculates the noise model each time */ std::shared_ptr linearize(const Values& x) const override { // Only linearize if the factor is active if (!this->active(x)) return std::shared_ptr(); //std::cout<<"About to linearize"< A(this->size()); Vector b = -whitenedError(x, A); A1 = A[0]; return GaussianFactor::shared_ptr( new JacobianFactor(key_, A1, b, noiseModel::Unit::Create(b.size()))); } /* ************************************************************************* */ /** A function overload to accept a vector instead of a pointer to * the said type. */ Vector whitenedError(const Values& x, OptionalMatrixVecType H = nullptr) const { bool debug = true; Matrix H_compose, H_between1, H_dummy; T orgA_T_currA = valA_.at(keyA_); T orgB_T_currB = valB_.at(keyB_); T orgA_T_orgB = x.at(key_); T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB, H_compose, H_dummy); T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB, H_dummy, H_between1); T currA_T_currB_msr = measured_; Vector err = currA_T_currB_msr.localCoordinates(currA_T_currB_pred); // Calculate indicator probabilities (inlier and outlier) Vector p_inlier_outlier = calcIndicatorProb(x, err); double p_inlier = p_inlier_outlier[0]; double p_outlier = p_inlier_outlier[1]; if (start_with_M_step_){ start_with_M_step_ = false; p_inlier = 0.5; p_outlier = 0.5; } Vector err_wh_inlier = model_inlier_->whiten(err); Vector err_wh_outlier = model_outlier_->whiten(err); Matrix invCov_inlier = model_inlier_->R().transpose() * model_inlier_->R(); Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); Vector err_wh_eq; err_wh_eq.resize(err_wh_inlier.rows()*2); err_wh_eq << sqrt(p_inlier) * err_wh_inlier.array() , sqrt(p_outlier) * err_wh_outlier.array(); Matrix H_unwh = H_compose * H_between1; if (H){ Matrix H_inlier = sqrt(p_inlier)*model_inlier_->Whiten(H_unwh); Matrix H_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H_unwh); Matrix H_aug = stack(2, &H_inlier, &H_outlier); (*H)[0].resize(H_aug.rows(),H_aug.cols()); (*H)[0] = H_aug; } if (debug){ // std::cout<<"H_compose - rows, cols, : "<& H) const { return whitenedError(x, &H); } /* ************************************************************************* */ Vector calcIndicatorProb(const Values& x) const { Vector err = unwhitenedError(x); return this->calcIndicatorProb(x, err); } /* ************************************************************************* */ Vector calcIndicatorProb(const Values& x, const Vector& err) const { // Calculate indicator probabilities (inlier and outlier) Vector err_wh_inlier = model_inlier_->whiten(err); Vector err_wh_outlier = model_outlier_->whiten(err); Matrix invCov_inlier = model_inlier_->R().transpose() * model_inlier_->R(); Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); double p_inlier = prior_inlier_ * sqrt(invCov_inlier.norm()) * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) ); double p_outlier = prior_outlier_ * sqrt(invCov_outlier.norm()) * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) ); double sumP = p_inlier + p_outlier; p_inlier /= sumP; p_outlier /= sumP; if (flag_bump_up_near_zero_probs_){ // Bump up near-zero probabilities (as in linerFlow.h) double minP = 0.05; // == 0.1 / 2 indicator variables if (p_inlier < minP || p_outlier < minP){ if (p_inlier < minP) p_inlier = minP; if (p_outlier < minP) p_outlier = minP; sumP = p_inlier + p_outlier; p_inlier /= sumP; p_outlier /= sumP; } } return (Vector(2) << p_inlier, p_outlier).finished(); } /* ************************************************************************* */ Vector unwhitenedError(const Values& x) const { T orgA_T_currA = valA_.at(keyA_); T orgB_T_currB = valB_.at(keyB_); T orgA_T_orgB = x.at(key_); T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB); T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB); T currA_T_currB_msr = measured_; return currA_T_currB_msr.localCoordinates(currA_T_currB_pred); } /* ************************************************************************* */ SharedGaussian get_model_inlier() const { return model_inlier_; } /* ************************************************************************* */ SharedGaussian get_model_outlier() const { return model_outlier_; } /* ************************************************************************* */ Matrix get_model_inlier_cov() const { return (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); } /* ************************************************************************* */ Matrix get_model_outlier_cov() const { return (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); } /* ************************************************************************* */ void updateNoiseModels(const Values& values, const Marginals& marginals) { /* given marginals version, don't need to marginal multiple times if update a lot */ KeyVector Keys; Keys.push_back(keyA_); Keys.push_back(keyB_); JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys); Matrix cov1 = joint_marginal12(keyA_, keyA_); Matrix cov2 = joint_marginal12(keyB_, keyB_); Matrix cov12 = joint_marginal12(keyA_, keyB_); updateNoiseModels_givenCovs(values, cov1, cov2, cov12); } /* ************************************************************************* */ void updateNoiseModels(const Values& values, const NonlinearFactorGraph& graph){ /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories * (note these are given in the E step, where indicator probabilities are calculated). * * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). * * TODO: improve efficiency (info form) */ // get joint covariance of the involved states Marginals marginals(graph, values, Marginals::QR); this->updateNoiseModels(values, marginals); } /* ************************************************************************* */ void updateNoiseModels_givenCovs(const Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){ /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories * (note these are given in the E step, where indicator probabilities are calculated). * * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). * * TODO: improve efficiency (info form) */ const T& p1 = values.at(keyA_); const T& p2 = values.at(keyB_); Matrix H1, H2; p1.between(p2, H1, H2); // h(x) Matrix H; H.resize(H1.rows(), H1.rows()+H2.rows()); H << H1, H2; // H = [H1 H2] Matrix joint_cov; joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols()); joint_cov << cov1, cov12, cov12.transpose(), cov2; Matrix cov_state = H*joint_cov*H.transpose(); // model_inlier_->print("before:"); // update inlier and outlier noise models Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); model_inlier_ = noiseModel::Gaussian::Covariance(covRinlier + cov_state); Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); model_outlier_ = noiseModel::Gaussian::Covariance(covRoutlier + cov_state); // model_inlier_->print("after:"); // std::cout<<"covRinlier + cov_state: "<R().rows() + model_inlier_->R().cols(); } private: #if GTSAM_ENABLE_BOOST_SERIALIZATION /** Serialization function */ friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int /*version*/) { ar & boost::serialization::make_nvp("NonlinearFactor", boost::serialization::base_object(*this)); //ar & BOOST_SERIALIZATION_NVP(measured_); } #endif }; // \class TransformBtwRobotsUnaryFactorEM /// traits template struct traits > : public Testable > { }; } /// namespace gtsam