/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactor.h * @brief Basic bearing factor from 2D measurement * @author Chris Beall * @author Richard Roberts * @author Frank Dellaert * @author Alex Cunningham */ #pragma once #include #include #include "gtsam/geometry/Cal3_S2.h" namespace gtsam { /** * Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here. * i.e. the main building block for visual SLAM. * @ingroup slam */ template class MultiProjectionFactor: public NoiseModelFactor { protected: // Keep a copy of measurement and calibration for I/O Vector measured_; ///< 2D measurement for each of the n views std::shared_ptr K_; ///< shared pointer to calibration object std::optional body_P_sensor_; ///< The pose of the sensor in the body frame // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NoiseModelFactor Base; /// shorthand for this class typedef MultiProjectionFactor This; /// shorthand for a smart pointer to a factor typedef std::shared_ptr shared_ptr; /// Default constructor MultiProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} /** * Constructor * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2n dimensional location of the n points in the n views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param pointKey is the index of the landmark * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model, KeySet poseKeys, Key pointKey, const std::shared_ptr& K, std::optional body_P_sensor = {}) : Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor), throwCheirality_(false), verboseCheirality_(false) { keys_.assign(poseKeys.begin(), poseKeys.end()); keys_.push_back(pointKey); } /** * Constructor with exception-handling flags * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2 dimensional location of point in image (the measurement) * @param model is the standard deviation * @param poseKey is the index of the camera * @param pointKey is the index of the landmark * @param K shared pointer to the constant calibration * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality * @param body_P_sensor is the transform from body to sensor frame (default identity) */ MultiProjectionFactor(const Vector& measured, const SharedNoiseModel& model, KeySet poseKeys, Key pointKey, const std::shared_ptr& K, bool throwCheirality, bool verboseCheirality, std::optional body_P_sensor = {}) : Base(model), measured_(measured), K_(K), body_P_sensor_(body_P_sensor), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} /** Virtual destructor */ ~MultiProjectionFactor() override {} /// @return a deep copy of this factor NonlinearFactor::shared_ptr clone() const override { return std::static_pointer_cast( NonlinearFactor::shared_ptr(new This(*this))); } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override { std::cout << s << "MultiProjectionFactor, z = "; std::cout << measured_ << "measurements, z = "; if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); Base::print("", keyFormatter); } /// equals bool equals(const NonlinearFactor& p, double tol = 1e-9) const override { const This *e = dynamic_cast(&p); return e && Base::equals(p, tol) //&& this->measured_.equals(e->measured_, tol) && this->K_->equals(*e->K_, tol) && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// Evaluate error h(x)-z and optionally derivatives Vector unwhitenedError(const Values& x, OptionalMatrixVecType H = nullptr) const override { Vector a; return a; // Point3 point = x.at(*keys_.end()); // // std::vector::iterator vit; // for (vit = keys_.begin(); vit != keys_.end()-1; vit++) { // Key key = (*vit); // Pose3 pose = x.at(key); // // if(body_P_sensor_) { // if(H1) { // Matrix H0; // PinholeCamera camera(pose.compose(*body_P_sensor_, H0), *K_); // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); // *H1 = *H1 * H0; // return reprojectionError; // } else { // PinholeCamera camera(pose.compose(*body_P_sensor_), *K_); // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); // return reprojectionError; // } // } else { // PinholeCamera camera(pose, *K_); // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); // return reprojectionError; // } // } } Vector evaluateError(const Pose3& pose, const Point3& point, OptionalJacobian<2, 6> H1 = {}, OptionalJacobian<2,3> H2 = {}) const { try { if(body_P_sensor_) { if(H1) { Matrix H0; PinholeCamera camera(pose.compose(*body_P_sensor_, H0), *K_); Point2 reprojectionError(camera.project(point, H1, H2) - measured_); *H1 = *H1 * H0; return reprojectionError; } else { PinholeCamera camera(pose.compose(*body_P_sensor_), *K_); Point2 reprojectionError(camera.project(point, H1, H2) - measured_); return reprojectionError; } } else { PinholeCamera camera(pose, *K_); Point2 reprojectionError(camera.project(point, H1, H2) - measured_); return reprojectionError; } } catch( CheiralityException& e) { if (H1) *H1 = Matrix::Zero(2,6); if (H2) *H2 = Matrix::Zero(2,3); if (verboseCheirality_) std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->keys_.at(1)) << " moved behind camera " << DefaultKeyFormatter(this->keys_.at(0)) << std::endl; if (throwCheirality_) throw e; } return Vector::Ones(2) * 2.0 * K_->fx(); } /** return the measurements */ const Vector& measured() const { return measured_; } /** return the calibration object */ inline const std::shared_ptr calibration() const { return K_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: #if GTSAM_ENABLE_BOOST_SERIALIZATION /// /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int /*version*/) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(K_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } #endif }; } // \ namespace gtsam