#LyX 1.6.7 created this file. For more info see http://www.lyx.org/ \lyxformat 345 \begin_document \begin_header \textclass article \use_default_options true \language english \inputencoding auto \font_roman default \font_sans default \font_typewriter default \font_default_family default \font_sc false \font_osf false \font_sf_scale 100 \font_tt_scale 100 \graphics default \paperfontsize default \use_hyperref false \papersize default \use_geometry false \use_amsmath 1 \use_esint 1 \cite_engine basic \use_bibtopic false \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \defskip medskip \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \author "" \author "" \end_header \begin_body \begin_layout Section Basic solving with Cholesky \end_layout \begin_layout Standard Solving a linear least-squares system: \begin_inset Formula \[ \arg\min_{x}\left\Vert Ax-b\right\Vert ^{2}\] \end_inset Set derivative equal to zero: \begin_inset Formula \begin{align*} 0 & =2A^{T}\left(Ax-b\right)\\ 0 & =A^{T}Ax-A^{T}b\end{align*} \end_inset For comparison, with QR we do \begin_inset Formula \begin{align*} 0 & =R^{T}Q^{T}QRx-R^{T}Qb\\ & =R^{T}Rx-R^{T}Qb\\ Rx & =Qb\\ x & =R^{-1}Qb\end{align*} \end_inset But with Cholesky we do \begin_inset Formula \begin{align*} 0 & =R^{T}RR^{T}Rx-R^{T}Rb\\ & =R^{T}Rx-b\\ & =Rx-R^{-T}b\\ x & =R^{-1}R^{-T}b\end{align*} \end_inset \end_layout \begin_layout Section Frontal (rank-deficient) solving with Cholesky \end_layout \begin_layout Standard To do multi-frontal elimination, we decompose into rank-deficient conditionals. \begin_inset Formula \[ \left[\begin{array}{cccccc} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right]\to\] \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ \left[\begin{array}{cc} R^{T} & 0\\ S^{T} & C^{T}\end{array}\right]\left[\begin{array}{cc} R & S\\ 0 & C\end{array}\right]=\left[\begin{array}{cc} F^{T}F & F^{T}G\\ G^{T}F & G^{T}G\end{array}\right]\] \end_inset \end_layout \begin_layout Standard \begin_inset space ~ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ R^{T}R=F^{T}F\] \end_inset \end_layout \begin_layout Standard \begin_inset space ~ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{align*} R^{T}S & =F^{T}G\\ S & =R^{-T}F^{T}G\end{align*} \end_inset \end_layout \begin_layout Standard \begin_inset space ~ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{align*} S^{T}S+C^{T}C & =G^{T}G\\ G^{T}FR^{-1}R^{-T}F^{T}G+C^{T}C & =G^{T}G\\ G^{T}QRR^{-1}R^{-T}R^{T}Q^{T}G+C^{T}C & =G^{T}G\\ \textbf{if }R\textbf{ is invertible, }G^{T}G+C^{T}C & =G^{T}G\\ C^{T}C & =0\end{align*} \end_inset \end_layout \end_body \end_document